References
Items 1 to 12 of 6390 total
- Dai Z et al. (DEC 2007) Phytomedicine : international journal of phytotherapy and phytopharmacology 14 12 806--14
Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation.
In the present study, we investigated the in vitro effect of resveratrol (RSVL), a polyphenolic phytoestrogen, on cell proliferation and osteoblastic maturation in human bone marrow-derived mesenchymal stem cell (HBMSC) cultures. RSVL (10(-8)-10(-5) M) increased cell growth dose-dependently, as measured by [(3)H]-thymidine incorporation, and stimulated osteoblastic maturation as assessed by alkaline phosphatase (ALP) activity, calcium deposition into the extracellular matrix, and the expression of osteoblastic markers such as RUNX2/CBFA1, Osterix and Osteocalcin in HBMSCs cell cultures. Further studies found that RSVL (10(-6)M) resulted in a rapid activation of both extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) signaling in HBMSCs cultures. The effects of RSVL were mimicked by 17beta-estrodial (10(-8) M) and were abolished by estrogen receptor (ER) antagonist ICI182780. An ERK1/2 pathway inhibitor, PD98059, significantly attenuated RSVL-induced ERK1/2 phosphorylation, consistent with the reduction of cell proliferation and osteoblastic differentiation as well as expression of osteoblastic markers. In contrast, SB203580, a p38 MAPK pathway blocker, blocked RSVL-induced p38 phosphorylation, but resulted in an increase of cell proliferation and a more osteoblastic maturation. These data suggest that RSVL stimulates HBMSCs proliferation and osteoblastic differentiation through an ER-dependent mechanism and coupling to ERK1/2 activation.Catalog #: Product Name: 72862 Resveratrol Catalog #: 72862 Product Name: Resveratrol Awe JP et al. (JUL 2013) Stem cell research & therapy 4 4 87Generation and characterization of transgene-free human induced pluripotent stem cells and conversion to putative clinical-grade status
INTRODUCTION: The reprogramming of a patient's somatic cells back into induced pluripotent stem cells (iPSCs) holds significant promise for future autologous cellular therapeutics. The continued presence of potentially oncogenic transgenic elements following reprogramming, however, represents a safety concern that should be addressed prior to clinical applications. The polycistronic stem cell cassette (STEMCCA), an excisable lentiviral reprogramming vector, provides, in our hands, the most consistent reprogramming approach that addresses this safety concern. Nevertheless, most viral integrations occur in genes, and exactly how the integration, epigenetic reprogramming, and excision of the STEMCCA reprogramming vector influences those genes and whether these cells still have clinical potential are not yet known. METHODS: In this study, we used both microarray and sensitive real-time PCR to investigate gene expression changes following both intron-based reprogramming and excision of the STEMCCA cassette during the generation of human iPSCs from adult human dermal fibroblasts. Integration site analysis was conducted using nonrestrictive linear amplification PCR. Transgene-free iPSCs were fully characterized via immunocytochemistry, karyotyping and teratoma formation, and current protocols were implemented for guided differentiation. We also utilized current good manufacturing practice guidelines and manufacturing facilities for conversion of our iPSCs into putative clinical grade conditions. RESULTS: We found that a STEMCCA-derived iPSC line that contains a single integration, found to be located in an intronic location in an actively transcribed gene, PRPF39, displays significantly increased expression when compared with post-excised stem cells. STEMCCA excision via Cre recombinase returned basal expression levels of PRPF39. These cells were also shown to have proper splicing patterns and PRPF39 gene sequences. We also fully characterized the post-excision iPSCs, differentiated them into multiple clinically relevant cell types (including oligodendrocytes, hepatocytes, and cardiomyocytes), and converted them to putative clinical-grade conditions using the same approach previously approved by the US Food and Drug Administration for the conversion of human embryonic stem cells from research-grade to clinical-grade status. CONCLUSION: For the first time, these studies provide a proof-of-principle for the generation of fully characterized transgene-free human iPSCs and, in light of the limited availability of current good manufacturing practice cellular manufacturing facilities, highlight an attractive potential mechanism for converting research-grade cell lines into putatively clinical-grade biologics for personalized cellular therapeutics.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Bieback K et al. (JAN 2004) Stem cells (Dayton, Ohio) 22 4 625--34Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood.
Evidence has emerged that mesenchymal stem cells (MSCs) represent a promising population for supporting new clinical concepts in cellular therapy. However, attempts to isolate MSCs from umbilical cord blood (UCB) of full-term deliveries have previously either failed or been characterized by a low yield. We investigated whether cells with MSC characteristics and multi-lineage differentiation potential can be cultivated from UCB of healthy newborns and whether yields might be maximized by optimal culture conditions or by defining UCB quality criteria. Using optimized isolation and culture conditions, in up to 63% of 59 low-volume UCB units, cells showing a characteristic mesenchymal morphology and immune phenotype (MSC-like cells) were isolated. These were similar to control MSCs from adult bone marrow (BM). The frequency of MSC-like cells ranged from 0 to 2.3 clones per 1 x 10(8) mononuclear cells (MNCs). The cell clones proliferated extensively with at least 20 population doublings within eight passages. In addition, osteogenic and chondrogenic differentiation demonstrated a multi-lineage capacity comparable with BM MSCs. However, in contrast to MSCs, MSC-like cells showed a reduced sensitivity to undergo adipogenic differentiation. Crucial points to isolate MSC-like cells from UCB were a time from collection to isolation of less than 15 hours, a net volume of more than 33 ml, and an MNC count of more than 1 x 10(8) MNCs. Because MSC-like cells can be isolated at high efficacy from full-term UCB donations, we regard UCB as an additional stem cell source for experimental and potentially clinical purposes.Catalog #: Product Name: 05401 MesenCult™ MSC Basal Medium (Human) 05402 MesenCult™ MSC Stimulatory Supplement (Human) 05411 MesenCult™ Proliferation Kit (Human) Catalog #: 05401 Product Name: MesenCult™ MSC Basal Medium (Human) Catalog #: 05402 Product Name: MesenCult™ MSC Stimulatory Supplement (Human) Catalog #: 05411 Product Name: MesenCult™ Proliferation Kit (Human) Chichagova V et al. ( 2016) 1353 285--307Generation of Human Induced Pluripotent Stem Cells Using RNA-Based Sendai Virus System and Pluripotency Validation of the Resulting Cell Population.
Human induced pluripotent stem cells (hiPSCs) provide a platform for studying human disease in vitro, increase our understanding of human embryonic development, and provide clinically relevant cell types for transplantation, drug testing, and toxicology studies. Since their discovery, numerous advances have been made in order to eliminate issues such as vector integration into the host genome, low reprogramming efficiency, incomplete reprogramming and acquisition of genomic instabilities. One of the ways to achieve integration-free reprogramming is by using RNA-based Sendai virus. Here we describe a method to generate hiPSCs with Sendai virus in both feeder-free and feeder-dependent culture systems. Additionally, we illustrate methods by which to validate pluripotency of the resulting stem cell population.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Galera-Monge T et al. (MAY 2016) Stem Cell Research 16 3 766--769Generation of a human iPSC line from a patient with Leigh syndrome caused by a mutation in the MT-ATP6 gene
Human iPSC line L749.1 was generated from fibroblasts of a patient with Leigh syndrome associated with a heteroplasmic mutation in the MT-ATP6 gene. Reprogramming factors OCT4, SOX2, CMYC and KLF4 were delivered using retroviruses.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Sand KL et al. (APR 2009) Cellular and molecular life sciences : CMLS 66 8 1446--56Modulation of natural killer cell cytotoxicity and cytokine release by the drug glatiramer acetate.
Glatiramer acetate (GA or Copaxone) is a drug used to treat experimental autoimmune encephalomyelitis in mice and multiple sclerosis in human. Here, we describe a new mechanism of action for this drug. GA enhanced the cytolysis of human NK cells against autologous and allogeneic immature and mature monocyte-derived dendritic cells (DCs). This drug reduced the percentages of mature DCs expressing CD80, CD83, HLA-DR or HLA-I. In contrast, it did not modulate the percentages of NK cells expressing NKG2D, NKp30, or NKp44. Nonetheless, anti-NKp30 or anti-CD86 inhibited GA-enhanced human NK cell lysis of immature DCs. Hence, CD86, and NKp30 are important for NK cell lysis of immature DCs, whereas CD80, CD83, HLA-DR and HLA-I are important for the lysis of mature DCs when GA is used as a stimulus. Further, GA inhibited the release of IFN-gamma 24 h but increased the release of TNF-alpha 48 h after incubation with NK cells.Catalog #: Product Name: 19055 EasySep™ Human NK Cell Enrichment Kit Catalog #: 19055 Product Name: EasySep™ Human NK Cell Enrichment Kit Varga E et al. (OCT 2016) Stem cell research 17 3 482--484Generation of Mucopolysaccharidosis type II (MPS II) human induced pluripotent stem cell (iPSC) line from a 1-year-old male with pathogenic IDS mutation.
Peripheral blood was collected from a 1-year-old male patient with an X-linked recessive mutation of Iduronate 2-sulfatase (IDS) gene (NM000202.7(IDS):c.85CtextgreaterT) causing MPS II (OMIM 309900). Peripheral blood mononuclear cells (PBMCs) were reprogrammed by lentiviral delivery of a self-silencing hOKSM polycistronic vector. The pluripotency of the iPSC line was confirmed by the expression of pluripotency-associated markers and in vitro spontaneous differentiation towards the 3 germ layers. The iPSC line showed normal karyotype. The cell line offers a good platform to study MPS II pathophysiology, for drug testing, early biomarker discovery and gene therapy studies.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Qiu W et al. (SEP 2011) Biochemical and biophysical research communications 413 1 98--104Activation of non-canonical Wnt/JNK pathway by Wnt3a is associated with differentiation fate determination of human bone marrow stromal (mesenchymal) stem cells.
The canonical Wnt signaling pathway can determine human bone marrow stromal (mesenchymal) stem cell (hMSC) differentiation fate into osteoblast or adipocyte lineages. However, its downstream targets in MSC are not well characterized. Thus, using DNA microarrays, we compared global gene expression patterns induced by Wnt3a treatment in two hMSC lines: hMSC-LRP5(T253) and hMSC-LRP5(T244) cells carrying known mutations of Wnt co-receptor LRP5 (T253I or T244M) that either enhances or represses canonical Wnt signaling, respectively. Wnt3a treatment of hMSC activated not only canonical Wnt signaling, but also the non-canonical Wnt/JNK pathway through upregulation of several non-canonical Wnt components e.g. naked cuticle 1 homolog (NKD1) and WNT11. Activation of the non-canonical Wnt/JNK pathway by anisomycin enhanced osteoblast differentiation whereas its inhibition by SP600125 enhanced adipocyte differentiation of hMSC. In conclusion, canonical and non-canonical Wnt signaling cooperate in determining MSC differentiation fate.Catalog #: Product Name: 72642 SP600125 Catalog #: 72642 Product Name: SP600125 Milush JM et al. (NOV 2009) Blood 114 23 4823--31Functionally distinct subsets of human NK cells and monocyte/DC-like cells identified by coexpression of CD56, CD7, and CD4.
The lack of natural killer (NK) cell-specific markers, as well as the overlap among several common surface antigens and functional properties, has obscured the delineation between NK cells and dendritic cells. Here, novel subsets of peripheral blood CD3/14/19(neg) NK cells and monocyte/dendritic cell (DC)-like cells were identified on the basis of CD7 and CD4 expression. Coexpression of CD7 and CD56 differentiates NK cells from CD56+ monocyte/DC-like cells, which lack CD7. In contrast to CD7+CD56+ NK cells, CD7(neg)CD56+ cells lack expression of NK cell-associated markers, but share commonalities in their expression of various monocyte/DC-associated markers. Using CD7, we observed approximately 60% of CD4+CD56+ cells were CD7(neg) cells, indicating the actual frequency of activated CD4+ NK cells is much lower in the blood than previously recognized. Functionally, only CD7+ NK cells secrete gamma interferon (IFNgamma) and degranulate after interleukin-12 (IL-12) plus IL-18 or K562 target cell stimulation. Furthermore, using CD7 to separate CD56+ NK cells and CD56+ myeloid cells, we demonstrate that unlike resting CD7+CD56+ NK cells, the CD7(neg)CD56+ myeloid cells stimulate a potent allogeneic response. Our data indicate that CD7 and CD56 coexpression discriminates NK cells from CD7(neg)CD56+ monocyte/DC-like cells, thereby improving our ability to study the intricacies of NK-cell subset phenotypes and functions in vivo.Catalog #: Product Name: 19051 EasySep™ Human T Cell Enrichment Kit Catalog #: 19051 Product Name: EasySep™ Human T Cell Enrichment Kit Xia G et al. (OCT 2013) Journal of Molecular Neuroscience 51 2 237--248Generation of human-induced pluripotent stem cells to model spinocerebellar ataxia type 2 in vitro
Spinocerebellar ataxia type 2 (SCA2) is caused by triple nucleotidebackslashnrepeat (CAG) expansion in the coding region of the ATAXN2 gene onbackslashnchromosome 12, which produces an elongated, toxic polyglutamine tract,backslashnleading to Purkinje cell loss. There is currently no effective therapy.backslashnOne of the main obstacles that hampers therapeutic development is lackbackslashnof an ideal disease model. In this study, we have generated andbackslashncharacterized SCA2-induced pluripotent stem (iPS) cell lines as an inbackslashnvitro cell model. Dermal fibroblasts (FBs) were harvested from primarybackslashncultures of skin explants obtained from a SCA2 subject and a healthybackslashnsubject. For reprogramming, hOct4, hSox2, hKlf4, and hc-Myc werebackslashntransduced to passage-3 FBs by retroviral infection. Both SCA2 iPS andbackslashncontrol iPS cells were successfully generated and showed typical stembackslashncell growth patterns with normal karyotype. All iPS cell lines expressedbackslashnstem cell markers and differentiated in vitro into cells from threebackslashnembryonic germ layers. Upon in vitro neural differentiation, SCA2 iPSbackslashncells showed abnormality in neural rosette formation but successfullybackslashndifferentiated into neural stem cells (NSCs) and subsequent neuralbackslashncells. SCA2 and normal FBs showed a comparable level of ataxin-2backslashnexpression; whereas SCA2 NSCs showed less ataxin-2 expression thanbackslashnnormal NSCs and SCA2 FBs. Within the neural lineage, neurons had thebackslashnmost abundant expression of ataxin-2. Time-lapsed neural growth assaybackslashnindicated terminally differentiated SCA2 neural cells were short-livedbackslashncompared with control neural cells. The expanded CAG repeats of SCA2backslashnwere stable throughout reprogramming and neural differentiation. Inbackslashnconclusion, we have established the first disease-specific human SCA2backslashniPS cell line. These mutant iPS cells have the potential for neuralbackslashndifferentiation. These differentiated neural cells harboring mutationsbackslashnare invaluable for the study of SCA2 pathogenesis and therapeutic drugbackslashndevelopment.Catalog #: Product Name: 05854 ™ Catalog #: 05854 Product Name: ™ U. Rajamani et al. (MAY 2018) Cell stem cell 22 5 698--712.e9Super-Obese Patient-Derived iPSC Hypothalamic Neurons Exhibit Obesogenic Signatures and Hormone Responses.
The hypothalamus contains neurons that integrate hunger and satiety endocrine signals from the periphery and are implicated in the pathophysiology of obesity. The limited availability of human hypothalamic neurons hampers our understanding of obesity disease mechanisms. To address this, we generated human induced pluripotent stem cells (hiPSCs) from multiple normal body mass index (BMI; BMI ≤ 25) subjects and super-obese (OBS) donors (BMI ≥ 50) with polygenic coding variants in obesity-associated genes. We developed a method to reliably differentiate hiPSCs into hypothalamic-like neurons (iHTNs) capable of secreting orexigenic and anorexigenic neuropeptides. Transcriptomic profiling revealed that, although iHTNs maintain a fetal identity, they respond appropriately to metabolic hormones ghrelin and leptin. Notably, OBS iHTNs retained disease signatures and phenotypes of high BMI, exhibiting dysregulated respiratory function, ghrelin-leptin signaling, axonal guidance, glutamate receptors, and endoplasmic reticulum (ER) stress pathways. Thus, human iHTNs provide a powerful platform to study obesity and gene-environment interactions.Catalog #: Product Name: 07930 CryoStor® CS10 Catalog #: 07930 Product Name: CryoStor® CS10 D. Gao et al. (SEP 2014) Cell 159 1 176--187Organoid cultures derived from patients with advanced prostate cancer.
The lack of in vitro prostate cancer models that recapitulate the diversity of human prostate cancer has hampered progress in understanding disease pathogenesis and therapy response. Using a 3D organoid system, we report success in long-term culture of prostate cancer from biopsy specimens and circulating tumor cells. The first seven fully characterized organoid lines recapitulate the molecular diversity of prostate cancer subtypes, including TMPRSS2-ERG fusion, SPOP mutation, SPINK1 overexpression, and CHD1 loss. Whole-exome sequencing shows a low mutational burden, consistent with genomics studies, but with mutations in FOXA1 and PIK3R1, as well as in DNA repair and chromatin modifier pathways that have been reported in advanced disease. Loss of p53 and RB tumor suppressor pathway function are the most common feature shared across the organoid lines. The methodology described here should enable the generation of a large repertoire of patient-derived prostate cancer lines amenable to genetic and pharmacologic studies.Catalog #: Product Name: 15122 RosetteSep™ Human CD45 Depletion Cocktail Catalog #: 15122 Product Name: RosetteSep™ Human CD45 Depletion Cocktail Items 1 to 12 of 6390 total
Shop ByFilter Results- Resource Type
-
- Reference 6390 items
- Area of Interest
-
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 6 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- ALDECOUNT 7 items
- ALDEFLUOR 223 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 2 items
- EasySep 760 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 12 items
- IntestiCult 142 items
- Lymphoprep 25 items
- MammoCult 50 items
- MegaCult 35 items
- MesenCult 133 items
- MethoCult 481 items
- MyeloCult 75 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 58 items
- RosetteSep 272 items
- STEMdiff 63 items
- STEMvision 9 items
- SepMate 42 items
- StemSpan 290 items
- TeSR 1581 items
- mFreSR 14 items
- Cell Type
-
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 by ϳԹ. All rights reserved.