References
Items 349 to 360 of 6390 total
- Eksteen B et al. (DEC 2004) The Journal of experimental medicine 200 11 1511--7
Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis.
Primary sclerosing cholangitis (PSC), a chronic inflammatory liver disease characterized by progressive bile duct destruction, develops as an extra-intestinal complication of inflammatory bowel disease (IBD) (Chapman, R.W. 1991. Gut. 32:1433-1435). However, the liver and bowel inflammation are rarely concomitant, and PSC can develop in patients whose colons have been removed previously. We hypothesized that PSC is mediated by long-lived memory T cells originally activated in the gut, but able to mediate extra-intestinal inflammation in the absence of active IBD (Grant, A.J., P.F. Lalor, M. Salmi, S. Jalkanen, and D.H. Adams. 2002. Lancet. 359:150-157). In support of this, we show that liver-infiltrating lymphocytes in PSC include mucosal T cells recruited to the liver by aberrant expression of the gut-specific chemokine CCL25 that activates alpha4beta7 binding to mucosal addressin cell adhesion molecule 1 on the hepatic endothelium. This is the first demonstration in humans that T cells activated in the gut can be recruited to an extra-intestinal site of disease and provides a paradigm to explain the pathogenesis of extra-intestinal complications of IBD.She K and Craig AM (JAN 2011) PloS one 6 9 e24423NMDA receptors mediate synaptic competition in culture.
BACKGROUND: Activity through NMDA type glutamate receptors sculpts connectivity in the developing nervous system. This topic is typically studied in the visual system in vivo, where activity of inputs can be differentially regulated, but in which individual synapses are difficult to visualize and mechanisms governing synaptic competition can be difficult to ascertain. Here, we develop a model of NMDA-receptor dependent synaptic competition in dissociated cultured hippocampal neurons. METHODOLOGY/PRINCIPAL FINDINGS: GluN1 -/- (KO) mouse hippocampal neurons lacking the essential NMDA receptor subunit were cultured alone or cultured in defined ratios with wild type (WT) neurons. The absence of functional NMDA receptors did not alter neuron survival. Synapse development was assessed by immunofluorescence for postsynaptic PSD-95 family scaffold and apposed presynaptic vesicular glutamate transporter VGlut1. Synapse density was specifically enhanced onto minority wild type neurons co-cultured with a majority of GluN1 -/- neighbour neurons, both relative to the GluN1 -/- neighbours and relative to sister pure wild type cultures. This form of synaptic competition was dependent on NMDA receptor activity and not conferred by the mere physical presence of GluN1. In contrast to these results in 10% WT and 90% KO co-cultures, synapse density did not differ by genotype in 50% WT and 50% KO co-cultures or in 90% WT and 10% KO co-cultures. CONCLUSIONS/SIGNIFICANCE: The enhanced synaptic density onto NMDA receptor-competent neurons in minority coculture with GluN1 -/- neurons represents a cell culture paradigm for studying synaptic competition. Mechanisms involved may include a retrograde 'reward' signal generated by WT neurons, although in this paradigm there was no 'punishment' signal against GluN1 -/- neurons. Cell culture assays involving such defined circuits may help uncover the rules and mechanisms of activity-dependent synaptic competition in the developing nervous system.Catalog #: Product Name: 05711 NeuroCult™ SM1 Neuronal Supplement Catalog #: 05711 Product Name: NeuroCult™ SM1 Neuronal Supplement Fu X et al. (AUG 2010) Tissue engineering. Part C, Methods 16 4 719--733Autologous feeder cells from embryoid body outgrowth support the long-term growth of human embryonic stem cells more effectively than those from direct differentiation.
Autologous feeder cells have been developed by various methods to minimize the presence of xenogenic entities in human embryonic stem cell (hESC) cultures. However, there was no systematic comparison of supportive effects of the feeder cells on hESC growth, nor comparison to the supportive effects of various feeder-free culture systems and standard mouse feeder cells. In this study, we aimed to compare the supportive abilities of autologous feeders derived either directly from H9 hESCs (H9 dF) or from outgrowth of embryoid body predifferentiated in suspension from H9 hESCs (H9 ebF). Mouse feeder system and matrigel-mTeSR1 feeder-free system were used as controls. H9 ebF was found to secrete more basic fibroblast growth factor in the conditioned medium than H9 dF did. The undifferentiated state of H9 hESCs was sustained more stably on H9 ebF than on H9 dF, and the differentiation potential of H9 hESCs on H9 ebF was higher than on H9 dF. We concluded that H9 ebF was an optimal autologous feeder to maintain the long-term undifferentiated state of hESCs in our current culture system. This study helps to standardize the autologous culture of hESCs. It also suggests a more definite direction for future development of xeno-free culture system for hESCs.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Sharma A et al. (JUN 2013) Journal of Biological Chemistry 288 25 18439--18447The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells
Aging is known to be the single most important risk factor for multiple diseases. Sirtuin 6, or SIRT6, has recently been identified as a critical regulator of transcription, genome stability, telomere integrity, DNA repair, and metabolic homeostasis. A knockout mouse model of SIRT6 has displayed dramatic phenotypes of accelerated aging. In keeping with its role in aging, we demonstrated that human dermal fibroblasts (HDFs) from older human subjects were more resistant to reprogramming by classic Yamanaka factors than those from younger human subjects, but the addition of SIRT6 during reprogramming improved such efficiency in older HDFs substantially. Despite the importance of SIRT6, little is known about the molecular mechanism of its regulation. We show, for the first, time posttranscriptional regulation of SIRT6 by miR-766 and inverse correlation in the expression of this microRNA in HDFs from different age groups. Our results suggest that SIRT6 regulates miR-766 transcription via a feedback regulatory loop, which has implications for the modulation of SIRT6 expression in reprogramming of aging cells.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Abe J et al. (MAY 2005) Journal of immunology (Baltimore, Md. : 1950) 174 9 5837--45Gene expression profiling of the effect of high-dose intravenous Ig in patients with Kawasaki disease.
Kawasaki disease (KD) is an acute vasculitis of infants and young children, preferentially affecting the coronary arteries. Intravenous infusion of high dose Ig (IVIG) effectively reduces systemic inflammation and prevents coronary artery lesions in KD. To investigate the mechanisms underlying the therapeutic effects of IVIG, we examined gene expression profiles of PBMC and purified monocytes obtained from acute patients before and after IVIG therapy. The results suggest that IVIG suppresses activated monocytes and macrophages by altering various functional aspects of the genes of KD patients. Among the 18 commonly decreased transcripts in both PBMC and purified monocytes, we selected six genes, FCGR1A, FCGR3A, CCR2, ADM, S100A9, and S100A12, and confirmed the microarray results by real-time RT-PCR. Moreover, the expressions of FcgammaRI and FcgammaRIII on monocytes were reduced after IVIG. Plasma S100A8/A9 heterocomplex, but not S100A9, levels were elevated in patients with acute KD compared with those in febrile controls. Furthermore, S100A8/A9 was rapidly down-regulated in response to IVIG therapy. Persistent elevation of S100A8/A9 after IVIG was found in patients who later developed coronary aneurysms. These results indicate that the effects of IVIG in KD may be mediated by suppression of an array of immune activation genes in monocytes, including those activating FcgammaRs and the S100A8/A9 heterocomplex.Catalog #: Product Name: 15021 RosetteSep™ Human T Cell Enrichment Cocktail 15028 RosetteSep™ Human Monocyte Enrichment Cocktail Catalog #: 15021 Product Name: RosetteSep™ Human T Cell Enrichment Cocktail Catalog #: 15028 Product Name: RosetteSep™ Human Monocyte Enrichment Cocktail Rodrigues DC et al. (OCT 2016) Cell reports 17 3 720--734MECP2 Is Post-transcriptionally Regulated during Human Neurodevelopment by Combinatorial Action of RNA-Binding Proteins and miRNAs.
A progressive increase in MECP2 protein levels is a crucial and precisely regulated event during neurodevelopment, but the underlying mechanism is unclear. We report that MECP2 is regulated post-transcriptionally during in vitro differentiation of human embryonic stem cells (hESCs) into cortical neurons. Using reporters to identify functional RNA sequences in the MECP2 3' UTR and genetic manipulations to explore the role of interacting factors on endogenous MECP2, we discover combinatorial mechanisms that regulate RNA stability and translation. The RNA-binding protein PUM1 and pluripotent-specific microRNAs destabilize the long MECP2 3' UTR in hESCs. Hence, the 3' UTR appears to lengthen during differentiation as the long isoform becomes stable in neurons. Meanwhile, translation of MECP2 is repressed by TIA1 in hESCs until HuC predominates in neurons, resulting in a switch to translational enhancement. Ultimately, 3' UTR-directed translational fine-tuning differentially modulates MECP2 protein in the two cell types to levels appropriate for normal neurodevelopment.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Sandströ et al. (FEB 2017) Toxicology in vitro : an international journal published in association with BIBRA 38 124--135Development and characterization of a human embryonic stem cell-derived 3D neural tissue model for neurotoxicity testing.
Alternative models for more rapid compound safety testing are of increasing demand. With emerging techniques using human pluripotent stem cells, the possibility of generating human in vitro models has gained interest, as factors related to species differences could be potentially eliminated. When studying potential neurotoxic effects of a compound it is of crucial importance to have both neurons and glial cells. We have successfully developed a protocol for generating in vitro 3D human neural tissues, using neural progenitor cells derived from human embryonic stem cells. These 3D neural tissues can be maintained for two months and undergo progressive differentiation. We showed a gradual decreased expression of early neural lineage markers, paralleled by an increase in markers specific for mature neurons, astrocytes and oligodendrocytes. At the end of the two-month culture period the neural tissues not only displayed synapses and immature myelin sheaths around axons, but electrophysiological measurements also showed spontaneous activity. Neurotoxicity testing - comparing non-neurotoxic to known neurotoxic model compounds - showed an expected increase in the marker of astroglial reactivity after exposure to known neurotoxicants methylmercury and trimethyltin. Although further characterization and refinement of the model is required, these results indicate its potential usefulness for in vitro neurotoxicity testing.Yao H et al. (DEC 2016) Neuroscience 339 329--337The Na(+)/HCO3(-) co-transporter is protective during ischemia in astrocytes.
The sodium bicarbonate co-transporter (NBC) is the major bicarbonate-dependent acid-base transporter in mammalian astrocytes and has been implicated in ischemic brain injury. A malfunction of astrocytes could have great impact on the outcome of stroke due to their participation in the formation of blood-brain barrier, synaptic transmission, and electrolyte balance in the human brain. Nevertheless, the role of NBC in the ischemic astrocyte death has not been well understood. In this work, we obtained skin biopsies from healthy human subjects and had their fibroblasts grown in culture and reprogrammed into human-induced pluripotent stem cells (hiPSCs). These hiPSCs were further differentiated into neuroprogenitor cells (NPCs) and then into human astrocytes. These astrocytes express GFAP and S100β and readily propagate calcium waves upon mechanical stimulation. Using pH-sensitive dye BCECF [2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein] and qPCR technique, we have confirmed that these astrocytes express functional NBC including electrogenic NBC (NBCe). In addition, astrocytes exposed to an ischemic solution (IS) that mimics the ischemic penumbral environment enhanced both mRNA and protein expression level of NBCe1 in astrocytes. Using IS and a generic NBC blocker S0859, we have studied the involvement of NBC in IS-induced human astrocytes death. Our results show that a 30μM S0859 induced a 97.5±1.6% (n=10) cell death in IS-treated astrocytes, which is significantly higher than 43.6±4.5%, (n=10) in the control group treated with IS alone. In summary, a NBC blocker exaggerates IS-induced cell death, suggesting that NBC activity is essential for astrocyte survival when exposed to ischemic penumbral environment.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Larsen ZH et al. (NOV 2016) Alcoholism, clinical and experimental research 40 11 2339--2350Effects of Ethanol on Cellular Composition and Network Excitability of Human Pluripotent Stem Cell-Derived Neurons.
BACKGROUND Prenatal alcohol exposure (PAE) in animal models results in excitatory-inhibitory (E/I) imbalance in neocortex due to alterations in the GABAergic interneuron (IN) differentiation and migration. Thus, E/I imbalance is a potential cause for intellectual disability in individuals with fetal alcohol spectrum disorder (FASD), but whether ethanol (EtOH) changes glutamatergic and GABAergic IN specification during human development remains unknown. Here, we created a human cellular model of PAE/FASD and tested the hypothesis that EtOH exposure during differentiation of human pluripotent stem cell-derived neurons (hPSNs) would cause the aberrant production of glutamatergic and GABAergic neurons, resulting in E/I imbalance. METHODS We applied 50 mM EtOH daily to differentiating hPSNs for 50 days to model chronic first-trimester exposure. We used quantitative polymerase chain reaction, immunocytochemical, and electrophysiological analysis to examine the effects of EtOH on hPSN specification and functional E/I balance. RESULTS We found that EtOH did not alter neural induction nor general forebrain patterning and had no effect on the expression of markers of excitatory cortical pyramidal neurons. In contrast, our data revealed highly significant changes to levels of transcripts involved with IN precursor development (e.g., GSX2, DLX1/2/5/6, NR2F2) as well as mature IN specification (e.g., SST, NPY). Interestingly, EtOH did not affect the number of GABAergic neurons generated nor the frequency or amplitude of miniature excitatory and inhibitory postsynaptic currents. CONCLUSIONS Similar to in vivo rodent studies, EtOH significantly and specifically altered the expression of genes involved with IN specification from hPSNs, but did not cause imbalances of synaptic excitation-inhibition. Thus, our findings corroborate previous studies pointing to aberrant neuronal differentiation as an underlying mechanism of intellectual disability in FASD. However, in contrast to rodent binge models, our chronic exposure model suggests possible compensatory mechanisms that may cause more subtle defects of network processing rather than gross alterations in total E/I balance.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 G. La Manno et al. (OCT 2016) Cell 167 2 566--580.e19Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells.
Understanding human embryonic ventral midbrain is of major interest for Parkinson's disease. However, the cell types, their gene expression dynamics, and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly defined human cell types, including five subtypes of radial glia-like cells and four progenitors. In the mouse, two mature fetal dopaminergic neuron subtypes diversified into five adult classes during postnatal development. Cell types and gene expression were generally conserved across species, but with clear differences in cell proliferation, developmental timing, and dopaminergic neuron development. Additionally, we developed a method to quantitatively assess the fidelity of dopaminergic neurons derived from human pluripotent stem cells, at a single-cell level. Thus, our study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.Zhou Y et al. (DEC 2016) Molecular autism 7 1 42CGG-repeat dynamics and FMR1 gene silencing in fragile X syndrome stem cells and stem cell-derived neurons.
BACKGROUND Fragile X syndrome (FXS), a common cause of intellectual disability and autism, results from the expansion of a CGG-repeat tract in the 5' untranslated region of the FMR1 gene to<200 repeats. Such expanded alleles, known as full mutation (FM) alleles, are epigenetically silenced in differentiated cells thus resulting in the loss of FMRP, a protein important for learning and memory. The timing of repeat expansion and FMR1 gene silencing is controversial. METHODS We monitored the repeat size and methylation status of FMR1 alleles with expanded CGG repeats in patient-derived induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) that were grown for extended period of time either as stem cells or differentiated into neurons. We used a PCR assay optimized for the amplification of large CGG repeats for sizing, and a quantitative methylation-specific PCR for the analysis of FMR1 promoter methylation. The FMR1 mRNA levels were analyzed by qRT-PCR. FMRP levels were determined by western blotting and immunofluorescence. Chromatin immunoprecipitation was used to study the association of repressive histone marks with the FMR1 gene in FXS ESCs. RESULTS We show here that while FMR1 gene silencing can be seen in FXS embryonic stem cells (ESCs), some silenced alleles contract and when the repeat number drops below ˜400, DNA methylation erodes, even when the repeat number remains<200. The resultant active alleles do not show the large step-wise expansions seen in stem cells from other repeat expansion diseases. Furthermore, there may be selection against large active alleles and these alleles do not expand further or become silenced on neuronal differentiation. CONCLUSIONS Our data support the hypotheses that (i) large expansions occur prezygotically or in the very early embryo, (ii) large unmethylated alleles may be deleterious in stem cells, (iii) methylation can occur on alleles with<400 repeats very early in embryogenesis, and (iv) expansion and contraction may occur by different mechanisms. Our data also suggest that the threshold for stable methylation of FM alleles may be higher than previously thought. A higher threshold might explain why some carriers of FM alleles escape methylation. It may also provide a simple explanation for why silencing has not been observed in mouse models with<200 repeats.Catalog #: Product Name: 85850 ձ™1 05832 STEMdiff™ Neural Rosette Selection Reagent Catalog #: 85850 Product Name: ձ™1 Catalog #: 05832 Product Name: STEMdiff™ Neural Rosette Selection Reagent Golos TG et al. (JUL 2010) Reproduction (Cambridge, England) 140 1 3--9Embryonic stem cells as models of trophoblast differentiation: progress, opportunities, and limitations.
While the determination of the trophoblast lineage and the facilitation of placental morphogenesis by trophoblast interactions with other cells of the placenta are crucial components for the establishment of pregnancy, these processes are not tractable at the time of human implantation. Embryonic stem cells (ESCs) provide an embryonic surrogate to derive insights into these processes. In this review, we will summarize current paradigms which promote trophoblast differentiation from ESCs, and potential opportunities for their use to further define signals directing morphogenesis of the placenta following implantation of the embryo into the endometrium.Items 349 to 360 of 6390 total
Shop ByFilter Results- Resource Type
-
- Reference 6390 items
- Area of Interest
-
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 6 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- ALDECOUNT 7 items
- ALDEFLUOR 223 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 2 items
- EasySep 760 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 12 items
- IntestiCult 142 items
- Lymphoprep 25 items
- MammoCult 50 items
- MegaCult 35 items
- MesenCult 133 items
- MethoCult 481 items
- MyeloCult 75 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 58 items
- RosetteSep 272 items
- STEMdiff 63 items
- STEMvision 9 items
- SepMate 42 items
- StemSpan 290 items
- TeSR 1581 items
- mFreSR 14 items
- Cell Type
-
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 by ϳԹ. All rights reserved.