References
Items 397 to 408 of 6390 total
- Abramovitz M et al. (JAN 2000) Biochimica et biophysica acta 1483 2 285--93
The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs.
Stable cell lines that individually express the eight known human prostanoid receptors (EP(1), EP(2), EP(3), EP(4), DP, FP, IP and TP) have been established using human embryonic kidney (HEK) 293(EBNA) cells. These recombinant cell lines have been employed in radioligand binding assays to determine the equilibrium inhibitor constants of known prostanoid receptor ligands at these eight receptors. This has allowed, for the first time, an assessment of the affinity and selectivity of several novel compounds at the individual human prostanoid receptors. This information should facilitate interpretation of pharmacological studies that employ these ligands as tools to study human tissues and cell lines and should, therefore, result in a greater understanding of prostanoid receptor biology.Catalog #: Product Name: 72192 Prostaglandin E2 Catalog #: 72192 Product Name: Prostaglandin E2 Donahue RE et al. (JAN 2000) Blood 95 2 445--52High levels of lymphoid expression of enhanced green fluorescent protein in nonhuman primates transplanted with cytokine-mobilized peripheral blood CD34(+) cells.
We have used a murine retrovirus vector containing an enhanced green fluorescent protein complimentary DNA (EGFP cDNA) to dynamically follow vector-expressing cells in the peripheral blood (PB) of transplanted rhesus macaques. Cytokine mobilized CD34(+) cells were transduced with an amphotropic vector that expressed EGFP and a dihydrofolate reductase cDNA under control of the murine stem cell virus promoter. The transduction protocol used the CH-296 recombinant human fibronectin fragment and relatively high concentrations of the flt-3 ligand and stem cell factor. Following transplantation of the transduced cells, up to 55% EGFP-expressing granulocytes were obtained in the peripheral circulation during the early posttransplant period. This level of myeloid marking, however, decreased to 0.1% or lower within 2 weeks. In contrast, EGFP expression in PB lymphocytes rose from 2%-5% shortly following transplantation to 10% or greater by week 5. After 10 weeks, the level of expression in PB lymphocytes continued to remain at 3%-5% as measured by both flow cytometry and Southern blot analysis, and EGFP expression was observed in CD4(+), CD8(+), CD20(+), and CD16/56(+) lymphocyte subsets. EGFP expression was only transiently detected in red blood cells and platelets soon after transplantation. Such sustained levels of lymphocyte marking may be therapeutic in a number of human gene therapy applications that require targeting of the lymphoid compartment. The transient appearance of EGFP(+) myeloid cells suggests that transduction of a lineage-restricted myeloid progenitor capable of short-term engraftment was obtained with this protocol. (Blood. 2000;95:445-452)Catalog #: Product Name: 04434 MethoCult™ H4434 Classic 04531 MethoCult™ H4531 04535 MethoCult™ H4535 Enriched Without EPO 04035 MethoCult™ H4035 Optimum Without EPO 04034 MethoCult™ H4034 Optimum 04435 MethoCult™ H4435 Enriched 04534 MethoCult™ H4534 Classic Without EPO 04436 MethoCult™ SF H4436 04064 Starter Kit for MethoCult™ H4034 Optimum 04100 MethoCult™ H4100 04230 MethoCult™ H4230 04236 MethoCult™ SF H4236 04431 MethoCult™ H4431 04464 Starter Kit for MethoCult™ H4434 Classic 04536 MethoCult™ SF H4536 04564 Starter Kit for MethoCult™ H4534 Classic Without EPO 04330 MethoCult™ H4330 Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Catalog #: 04531 Product Name: MethoCult™ H4531 Catalog #: 04535 Product Name: MethoCult™ H4535 Enriched Without EPO Catalog #: 04035 Product Name: MethoCult™ H4035 Optimum Without EPO Catalog #: 04034 Product Name: MethoCult™ H4034 Optimum Catalog #: 04435 Product Name: MethoCult™ H4435 Enriched Catalog #: 04534 Product Name: MethoCult™ H4534 Classic Without EPO Catalog #: 04436 Product Name: MethoCult™ SF H4436 Catalog #: 04064 Product Name: Starter Kit for MethoCult™ H4034 Optimum Catalog #: 04100 Product Name: MethoCult™ H4100 Catalog #: 04230 Product Name: MethoCult™ H4230 Catalog #: 04236 Product Name: MethoCult™ SF H4236 Catalog #: 04431 Product Name: MethoCult™ H4431 Catalog #: 04464 Product Name: Starter Kit for MethoCult™ H4434 Classic Catalog #: 04536 Product Name: MethoCult™ SF H4536 Catalog #: 04564 Product Name: Starter Kit for MethoCult™ H4534 Classic Without EPO Catalog #: 04330 Product Name: MethoCult™ H4330 Galy A et al. (JAN 2000) Blood 95 1 128--37Distinct signals control the hematopoiesis of lymphoid-related dendritic cells.
The molecular and cellular requirements for the development of different populations of human dendritic cells (DC) were studied. Conditions were defined that support DC production from lymphoid progenitors but that fail to induce DC formation from peripheral monocytes. The production of these lymphoid-related DC was severely blocked when hematopoietic progenitors overexpressed Ik7, a mutant dominant-negative Ikaros protein. In contrast, Ik7 did not block the formation of DC in conditions supporting the development of monocyte-derived DC. Furthermore, Ik7 did not block the formation of monocyte/macrophages and enhanced granulopoiesis. One of the molecular mechanisms mediated by Ik7 appears to be down-regulation of the flt3-receptor mRNA. Thus, distinct signals control the formation of DC demonstrating that some aspects of DC diversity are determined in part by distinct molecular cues at the hematopoietic level. (Blood. 2000;95:128-137)Catalog #: Product Name: 04431 MethoCult™ H4431 Catalog #: 04431 Product Name: MethoCult™ H4431 Yoshida H et al. (DEC 1999) Biochemical pharmacology 58 11 1695--703Inhibitory effect of tea flavonoids on the ability of cells to oxidize low density lipoprotein.
Dietary flavonoid intake has been reported to be inversely related to mortality from coronary heart disease, and the anti-atherosclerotic effect of flavonoids is considered to be due probably to their antioxidant properties. Oxidation of low density lipoprotein (LDL) has been reported to be induced by the constituent cells of the arterial wall. Accordingly, we examined the effect of pretreatment with tea flavonoids, such as theaflavin digallate, on the ability of cells to oxidize LDL. Theaflavin digallate pretreatment of macrophages or endothelial cells reduced cell-mediated LDL oxidation in a concentration- (0-400 microM) and time- (0-4 hr) dependent manner. This inhibitory effect of flavonoids on cell-mediated LDL oxidation was in the order of theaflavin digallate textgreater theaflavin textgreater or = epigallocatechin gallate textgreater epigallocatechin textgreater gallic acid. Further, we investigated the mechanisms by which flavonoids inhibited cell-mediated LDL oxidation using macrophages and theaflavin digallate. Theaflavin digallate pretreatment decreased superoxide production of macrophages and chelated iron ions significantly. These results suggest that tea flavonoids attenuate the ability of the cell to oxidize LDL, probably by reducing superoxide production in cells and chelating iron ions.Catalog #: Product Name: 73642 (-)-Epigallocatechin Gallate Catalog #: 73642 Product Name: (-)-Epigallocatechin Gallate Suehiro Y et al. (NOV 1999) Experimental hematology 27 11 1637--45Macrophage inflammatory protein 1alpha enhances in a different manner adhesion of hematopoietic progenitor cells from bone marrow, cord blood, and mobilized peripheral blood.
Regulatory mechanisms governing adhesion of hematopoietic progenitor cells to the stromal nische are poorly understood. Growth factors such as stem cell factor (SCF), granulocyte-macrophage colony-stimulating factor, and thrombopoietin were reported to upregulate the adhesion of hematopoietic progenitors to immobilized fibronectin through activation of integrin alpha4beta1 and alpha5beta1. Macrophage inflammatory protein (MIP)-1alpha is a C-C chemokine that suppresses colony formation by stem/progenitor cells in vitro. We asked if MIP-1alpha would modulate the adhesive phenotype of colony-forming cells (CFCs) obtained from healthy donor bone marrow (BM), cord blood (CB), and mobilized peripheral blood (mPB) CD34+ cells, in comparison with SCF, using immobilized fibronectin. SCF significantly increased the level of adhesion of CFCs from BM, CB, and mPB. On the other hand, MIP-1alpha significantly increased the level of adhesion of CFCs from BM and CB, but less so from mPB. The effects of MIP-1alpha were inhibited by blocking antibodies to integrin alpha4, alpha5, or beta1, and polymerization plus rearrangement of F-actin were observed in affected cells by labeling with rhodamine-conjugated phalloidine. These data indicate that the effect of MIP-1alpha on the adhesive phenotype of CFCs is mediated by modulation of the organization of integrin. The amount of MIP-1alpha receptor on mPB was less than for BM or CB, which may explain the distinct characteristics in the adhesive response induced by MIP-1alpha. We suggest that hematopoietic progenitor cells from different sources may be heterogeneous with respect to maturation, integrin affinity, MIP-1alpha receptor expression, and regulation of MIP-1alpha signaling. Our data indicate that MIP-1alpha may affect migration, homing, and mobilization of hematopoietic progenitors by modulating the adhesive phenotype of these cells.Gribaldo L et al. (NOV 1999) Experimental hematology 27 11 1593--8Comparison of in vitro drug-sensitivity of human granulocyte-macrophage progenitors from two different origins: umbilical cord blood and bone marrow.
Predictive in vitro hematotoxicity assays using human cells will provide estimation of tolerable level and aid considerably the development of agents with greater therapeutic activity and less toxicity. Human hematopoietic cells can be derived from three sources: human bone marrow by sternal or femoral aspiration, mobilized peripheral blood, or umbilical cord blood samples collected from placentas after deliveries. Because of the difficulties to have a continuous supply of bone marrow cells from normal human donors and the related ethical problems, we performed a study to compare the sensitivity of human bone marrow cells (h-BMC) and human cord blood cells (h-CBC) to chemicals in order to confirm if h-CBC can readily replace bone marrow cells in checking the sensitivity of GM-CFU progenitors to drugs as preliminarily reported in literature. Our results showed that the prediction of IC50 values in human model is quite similar by using h-BMC or h-CBC. On the contrary, the type of medium influenced in a significant way the ICs determination of some drugs.Catalog #: Product Name: 04434 MethoCult™ H4434 Classic 04531 MethoCult™ H4531 04535 MethoCult™ H4535 Enriched Without EPO 04035 MethoCult™ H4035 Optimum Without EPO 04034 MethoCult™ H4034 Optimum 04435 MethoCult™ H4435 Enriched 04534 MethoCult™ H4534 Classic Without EPO 04436 MethoCult™ SF H4436 04064 Starter Kit for MethoCult™ H4034 Optimum 04100 MethoCult™ H4100 04230 MethoCult™ H4230 04236 MethoCult™ SF H4236 04431 MethoCult™ H4431 04464 Starter Kit for MethoCult™ H4434 Classic 04536 MethoCult™ SF H4536 04564 Starter Kit for MethoCult™ H4534 Classic Without EPO 04330 MethoCult™ H4330 Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Catalog #: 04531 Product Name: MethoCult™ H4531 Catalog #: 04535 Product Name: MethoCult™ H4535 Enriched Without EPO Catalog #: 04035 Product Name: MethoCult™ H4035 Optimum Without EPO Catalog #: 04034 Product Name: MethoCult™ H4034 Optimum Catalog #: 04435 Product Name: MethoCult™ H4435 Enriched Catalog #: 04534 Product Name: MethoCult™ H4534 Classic Without EPO Catalog #: 04436 Product Name: MethoCult™ SF H4436 Catalog #: 04064 Product Name: Starter Kit for MethoCult™ H4034 Optimum Catalog #: 04100 Product Name: MethoCult™ H4100 Catalog #: 04230 Product Name: MethoCult™ H4230 Catalog #: 04236 Product Name: MethoCult™ SF H4236 Catalog #: 04431 Product Name: MethoCult™ H4431 Catalog #: 04464 Product Name: Starter Kit for MethoCult™ H4434 Classic Catalog #: 04536 Product Name: MethoCult™ SF H4536 Catalog #: 04564 Product Name: Starter Kit for MethoCult™ H4534 Classic Without EPO Catalog #: 04330 Product Name: MethoCult™ H4330 Xaus J et al. (OCT 1999) Journal of immunology (Baltimore, Md. : 1950) 163 8 4140--9Adenosine inhibits macrophage colony-stimulating factor-dependent proliferation of macrophages through the induction of p27kip-1 expression.
Adenosine is produced during inflammation and modulates different functional activities in macrophages. In murine bone marrow-derived macrophages, adenosine inhibits M-CSF-dependent proliferation with an IC50 of 45 microM. Only specific agonists that can activate A2B adenosine receptors such as 5'-N-ethylcarboxamidoadenosine, but not those active on A1 (N6-(R)-phenylisopropyladenosine), A2A ([p-(2-carbonylethyl)phenylethylamino]-5'-N-ethylcarboxamido adenosine), or A3 (N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide) receptors, induce the generation of cAMP and modulate macrophage proliferation. This suggests that adenosine regulates macrophage proliferation by interacting with the A2B receptor and subsequently inducing the production of cAMP. In fact, both 8-Br-cAMP (IC50 85 microM) and forskolin (IC50 7 microM) inhibit macrophage proliferation. Moreover, the inhibition of adenylyl cyclase and protein kinase A blocks the inhibitory effect of adenosine and its analogues on macrophage proliferation. Adenosine causes an arrest of macrophages at the G1 phase of the cell cycle without altering the activation of the extracellular-regulated protein kinase pathway. The treatment of macrophages with adenosine induces the expression of p27kip-1, a G1 cyclin-dependent kinase inhibitor, in a protein kinase A-dependent way. Moreover, the involvement of p27kip-1 in the adenosine inhibition of macrophage proliferation was confirmed using macrophages from mice with a disrupted p27kip-1 gene. These results demonstrate that adenosine inhibits macrophage proliferation through a mechanism that involves binding to A2B adenosine receptor, the generation of cAMP, and the induction of p27kip-1 expression.Catalog #: Product Name: 73602 8-Bromo-cAMP Catalog #: 73602 Product Name: 8-Bromo-cAMP Bü et al. (OCT 1999) Blood 94 7 2343--56The monoclonal antibody 97A6 defines a novel surface antigen expressed on human basophils and their multipotent and unipotent progenitors.
Basophils (Ba) and mast cells (MC) are important effector cells of inflammatory reactions. Both cell types derive from CD34(+) hematopoietic progenitors. However, little is known about the cell subsets that become committed to and give rise to Ba and/or MC. We have generated a monoclonal antibody (MoAb), 97A6, that specifically detects human Ba, MC (lung, skin), and their CD34(+) progenitors. Other mature hematopoietic cells (neutrophils, eosinophils, monocytes, lymphocytes, platelets) did not react with MoAb 97A6, and sorting of 97A6(+) peripheral blood (PB) and bone marrow (BM) cells resulted in an almost pure population (textgreater98%) of Ba. Approximately 1% of CD34(+) BM and PB cells was found to be 97A6(+). Culture of sorted CD34(+)97A6(+) BM cells in semisolid medium containing phytohemagglutinin-stimulated leukocyte supernatant for 16 days (multilineage assay) resulted in the formation of pure Ba colonies (10 of 40), Ba-eosinophil colonies (7 of 40), Ba-macrophage colonies (3 of 40), and multilineage Ba-eosinophil-macrophage and/or neutrophil colonies (12 of 40). In contrast, no Ba could be cultured from CD34(+)97A6(-) cells. Liquid culture of CD34(+) PB cells in the presence of 100 ng/mL interleukin (IL)-3 (Ba progenitor assay) resulted in an increase of 97A6(+) cells, starting from 1% of day-0 cells to almost 70% (basophils) after day 7. Culture of sorted BM CD34(+)97A6(+) cells in the presence of 100 ng/mL stem cell factor (SCF) for 35 days (mast cell progenitor assay) resulted in the growth of MC (textgreater30% on day 35). Anti-IgE-induced IgE receptor cross-linking on Ba for 15 minutes resulted in a 4-fold to 5-fold upregulation of 97A6 antigen expression. These data show that the 97A6-reactive antigen plays a role in basophil activation and is expressed on multipotent CD34(+) progenitors, MC progenitors, Ba progenitors, as well as on mature Ba and tissue MC. The lineage-specificity of MoAb 97A6 suggests that this novel marker may be a useful tool to isolate and analyze Ba/MC and their progenitors.Mujtaba T et al. (OCT 1999) Developmental biology 214 1 113--27Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells.
We have previously identified multipotent neuroepithelial (NEP) stem cells and lineage-restricted, self-renewing precursor cells termed NRPs (neuron-restricted precursors) and GRPs (glial-restricted precursors) present in the developing rat spinal cord (A. Kalyani, K. Hobson, and M. S. Rao, 1997, Dev. Biol. 186, 202-223; M. S. Rao and M. Mayer-Proschel, 1997, Dev. Biol. 188, 48-63; M. Mayer-Proschel, A. J. Kalyani, T. Mujtaba, and M. S. Rao, 1997, Neuron 19, 773-785). We now show that cells identical to rat NEPs, NRPs, and GRPs are present in mouse neural tubes and that immunoselection against cell surface markers E-NCAM and A2B5 can be used to isolate NRPs and GRPs, respectively. Restricted precursors similar to NRPs and GRPs can also be isolated from mouse embryonic stem cells (ES cells). ES cell-derived NRPs are E-NCAM immunoreactive, undergo self-renewal in defined medium, and differentiate into multiple neuronal phenotypes in mass culture. ES cells also generate A2B5-immunoreactive cells that are similar to E9 NEP-cell-derived GRPs and can differentiate into oligodendrocytes and astrocytes. Thus, lineage restricted precursors can be generated in vitro from cultured ES cells and these restricted precursors resemble those derived from mouse neural tubes. These results demonstrate the utility of using ES cells as a source of late embryonic precursor cells.Komarov PG et al. (SEP 1999) Science (New York, N.Y.) 285 5434 1733--7A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy.
Chemotherapy and radiation therapy for cancer often have severe side effects that limit their efficacy. Because these effects are in part determined by p53-mediated apoptosis, temporary suppression of p53 has been suggested as a therapeutic strategy to prevent damage of normal tissues during treatment of p53-deficient tumors. To test this possibility, a small molecule was isolated for its ability to reversibly block p53-dependent transcriptional activation and apoptosis. This compound, pifithrin-alpha, protected mice from the lethal genotoxic stress associated with anticancer treatment without promoting the formation of tumors. Thus, inhibitors of p53 may be useful drugs for reducing the side effects of cancer therapy and other types of stress associated with p53 induction.Catalog #: Product Name: 72062 Cyclic Pifithrin-Alpha Catalog #: 72062 Product Name: Cyclic Pifithrin-Alpha Muraille E et al. (SEP 1999) The Biochemical journal 342 Pt 3 697--705Distribution of the src-homology-2-domain-containing inositol 5-phosphatase SHIP-2 in both non-haemopoietic and haemopoietic cells and possible involvement of SHIP-2 in negative signalling of B-cells.
The termination of activation signals is a critical step in the control of the immune response; perturbation of inhibitory feedback pathways results in profound immune defects culminating in autoimmunity and overwhelming inflammation. FcgammaRIIB receptor is a well described inhibitory receptor. The ligation of B-cell receptor (BCR) and FcgammaRIIB leads to the inhibition of B-cell activation. Numerous studies have demonstrated that the SH2-domain-containing inositol 5-phosphatase SHIP (referred hereto as SHIP-1) is essential in this process. The cDNA encoding a second SH2-domain-containing inositol 5-phosphatase, SHIP-2, has been cloned [Pesesse, Deleu, De Smedt, Drayer and Erneux (1997) Biochem. Biophys. Res. Commun. 239, 697-700]. Here we report the distribution of SHIP-2 in mouse tissues: a Western blot analysis of mouse tissues reveals that SHIP-2 is expressed in both haemopoietic and non-haemopoietic cells. In addition to T-cell and B-cell lines, spleen, thymus and lung are shown to coexpress SHIP-1 and SHIP-2. Moreover, SHIP-2 is detected in fibroblasts, heart and different brain areas. SHIP-2 shows a maximal tyrosine phosphorylation and association to Shc after ligation of BCR to FcgammaRIIB but not after stimulation of BCR alone. Our results therefore suggest a possible role for SHIP-2 in the negative regulation of immunocompetent cells.Cho SK et al. (AUG 1999) Proceedings of the National Academy of Sciences of the United States of America 96 17 9797--802Functional characterization of B lymphocytes generated in vitro from embryonic stem cells.
To study molecular events involved in B lymphocyte development and V(D)J rearrangement, we have established an efficient system for the differentiation of embryonic stem (ES) cells into mature Ig-secreting B lymphocytes. Here, we show that B lineage cells generated in vitro from ES cells are functionally analogous to normal fetal liver-derived or bone marrow-derived B lineage cells at three important developmental stages: first, they respond to Flt-3 ligand during an early lymphopoietic progenitor stage; second, they become targets for Abelson murine leukemia virus (A-MuLV) infection at a pre-B cell stage; third, they secrete Ig upon stimulation with lipopolysaccharide at a mature mitogen-responsive stage. Moreover, the ES cell-derived A-MuLV-transformed pre-B (EAB) cells are phenotypically and functionally indistinguishable from standard A-MuLV-transformed pre-B cells derived from infection of mouse fetal liver or bone marrow. Notably, EAB cells possess functional V(D)J recombinase activity. In particular, the generation of A-MuLV transformants from ES cells will provide an advantageous system to investigate genetic modifications that will help to elucidate molecular mechanisms in V(D)J recombination and in A-MuLV-mediated transformation.Items 397 to 408 of 6390 total
Shop ByFilter Results- Resource Type
-
- Reference 6390 items
- Area of Interest
-
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 6 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- ALDECOUNT 7 items
- ALDEFLUOR 223 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 2 items
- EasySep 760 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 12 items
- IntestiCult 142 items
- Lymphoprep 25 items
- MammoCult 50 items
- MegaCult 35 items
- MesenCult 133 items
- MethoCult 481 items
- MyeloCult 75 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 58 items
- RosetteSep 272 items
- STEMdiff 63 items
- STEMvision 9 items
- SepMate 42 items
- StemSpan 290 items
- TeSR 1581 items
- mFreSR 14 items
- Cell Type
-
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 by ϳԹ. All rights reserved.