References
Items 565 to 576 of 6390 total
- Hanke JH et al. ( 1996) The Journal of biological chemistry 271 2 695--701
Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation.
Here, we have studied the activity of a novel protein-tyrosine kinase inhibitor that is selective for the Src family of tyrosine kinases. We have focused our study on the effects of this compound on T cell receptor-induced T cell activation, a process dependent on the activity of the Src kinases Lck and FynT. This compound is a nanomolar inhibitor of Lck and FynT, inhibits anti-CD3-induced protein-tyrosine kinase activity in T cells, demonstrates selectivity for Lck and FynT over ZAP-70, and preferentially inhibits T cell receptor-dependent anti-CD3-induced T cell proliferation over non-T cell receptor-dependent phorbol 12-myristate 13-acetate/interleukin-2 (IL-2)-induced T cell proliferation. Interestingly, this compound selectively inhibits the induction of the IL-2 gene, but not the granulocyte-macrophage colony-stimulating factor or IL-2 receptor genes. This compound offers a useful new tool for examining the role of the Lck and FynT tyrosine kinases versus ZAP-70 in T cell activation as well as the role of other Src family kinases in receptor function.Catalog #: Product Name: 73112 PP1 Catalog #: 73112 Product Name: PP1 Farese AM et al. (JAN 1996) Blood 87 2 581--91Acceleration of hematopoietic reconstitution with a synthetic cytokine (SC-55494) after radiation-induced bone marrow aplasia.
The synthetic cytokine (Synthokine) SC-55494 is a high-affinity interleukin-3 (IL-3) receptor ligand that stimulates greater in vitro multilineage hematopoietic activity than native IL-3, while inducing no significant increase in inflammatory activity relative to native IL-3. The aim of this study was to investigate the in vivo hematopoietic response of rhesus monkeys receiving Synthokine after radiation-induced marrow aplasia. Administration schedule and dose of Synthokine were evaluated. All animals were total-body irradiated (TBI) with 700 cGy 60Co gamma radiation on day 0. Beginning on day 1, cohorts of animals (n = 5) received Synthokine subcutaneously (SC) twice daily with 25 micrograms/kg/d or 100 micrograms/kg/d for 23 days or 100 micrograms/kg/d for 14 days. Control animals (n = 9) received human serum albumin SC once daily at 15 micrograms/kg/d for 23 days. Complete blood counts were monitored for 60 days postirradiation and the durations of neutropenia (NEUT; absolute neutrophil count [ANC] textless 500/microL) and thrombocytopenia (THROM; platelet count textless 20,000/microL) were assessed. Synthokine significantly (P textless .05) reduced the duration of THROM versus the HSA-treated animals regardless of dose or protocol length. The most striking reduction was obtained in the animals receiving 100 micrograms/kg/d for 23 days (THROM = 3.5 v 12.5 days in HSA control animals). Although the duration of NEUT was not significantly altered, the depth of the nadir was significantly lessened in all animal cohorts treated with Synthokine regardless of dose versus schedule length. Bone marrow progenitor cell cultures indicated a beneficial effect of Synthokine on the recovery of granulocyte-macrophage colony-forming units that was significantly higher at day 24 post-TBI in both cohorts treated at 25 and 100 micrograms/kg/d for 23 days relative to the control animals. Plasma pharmacokinetic parameters were evaluated in both normal and irradiated animals. Pharmacokinetic analysis performed in irradiated animals after 1 week of treatment suggests an effect of repetitive Synthokine schedule and/or TBI on distribution and/or elimination of Synthokine. These data show that the Synthokine, SC55 94, administered therapeutically post-TBI, significantly enhanced platelet recovery and modulated neutrophil nadir and may be clinically useful in the treatment of the myeloablated host.Catalog #: Product Name: 04434 MethoCult™ H4434 Classic 04531 MethoCult™ H4531 04535 MethoCult™ H4535 Enriched Without EPO 04035 MethoCult™ H4035 Optimum Without EPO 04034 MethoCult™ H4034 Optimum 04435 MethoCult™ H4435 Enriched 04534 MethoCult™ H4534 Classic Without EPO 04437 MethoCult™ Express 04436 MethoCult™ SF H4436 04064 Starter Kit for MethoCult™ H4034 Optimum 04100 MethoCult™ H4100 04230 MethoCult™ H4230 04236 MethoCult™ SF H4236 04431 MethoCult™ H4431 04464 Starter Kit for MethoCult™ H4434 Classic 04536 MethoCult™ SF H4536 04564 Starter Kit for MethoCult™ H4534 Classic Without EPO 04330 MethoCult™ H4330 Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Catalog #: 04531 Product Name: MethoCult™ H4531 Catalog #: 04535 Product Name: MethoCult™ H4535 Enriched Without EPO Catalog #: 04035 Product Name: MethoCult™ H4035 Optimum Without EPO Catalog #: 04034 Product Name: MethoCult™ H4034 Optimum Catalog #: 04435 Product Name: MethoCult™ H4435 Enriched Catalog #: 04534 Product Name: MethoCult™ H4534 Classic Without EPO Catalog #: 04437 Product Name: MethoCult™ Express Catalog #: 04436 Product Name: MethoCult™ SF H4436 Catalog #: 04064 Product Name: Starter Kit for MethoCult™ H4034 Optimum Catalog #: 04100 Product Name: MethoCult™ H4100 Catalog #: 04230 Product Name: MethoCult™ H4230 Catalog #: 04236 Product Name: MethoCult™ SF H4236 Catalog #: 04431 Product Name: MethoCult™ H4431 Catalog #: 04464 Product Name: Starter Kit for MethoCult™ H4434 Classic Catalog #: 04536 Product Name: MethoCult™ SF H4536 Catalog #: 04564 Product Name: Starter Kit for MethoCult™ H4534 Classic Without EPO Catalog #: 04330 Product Name: MethoCult™ H4330 Conneally E et al. (JAN 1996) Blood 87 2 456--64Rapid and efficient selection of human hematopoietic cells expressing murine heat-stable antigen as an indicator of retroviral-mediated gene transfer.
Recombinant retroviruses offer many advantages for the genetic modification of human hematopoietic cells, although their use in clinical protocols has thus far given disappointing results. There is therefore an important need to develop new strategies that will allow effectively transduced primitive hematopoietic target populations to be both rapidly characterized and isolated free of residual nontransduced but biologically equivalent cells. To address this need, we constructed a murine stem cell virus (MSCV)-based retroviral vector containing the 228-bp coding sequence of the murine heat-stable antigen (HSA) and generated helper virus-free amphotropic MSCV-HSA producer cells by transfection of GP-env AM12 packaging cells. Light density and, in some cases, lineage marker-negative (lin-) normal human marrow or mobilized peripheral blood cells preactivated by exposure to interleukin-3 (IL-3), IL-6, and Steel factor in vitro for 48 hours were then infected by cocultivation with these MSCV-HSA producer cells for a further 48 hours in the presence of the same cytokines. Fluorescence-activated cell sorting (FACS) analysis of the cells 24 hours later showed 21% to 41% (mean, 27%) of those that were still CD34+ to have acquired the ability to express HSA. The extent of gene transfer to erythroid and granulopoietic progenitors (burst-forming unit-erythroid and colony-forming unit-granulocyte-macrophage), as assessed by the ability of these cells to form colonies of mature progeny in the presence of normally toxic concentrations of G418, averaged 11% and 12%, respectively, in 6 experiments. These values could be increased to 100% and 77%, respectively, by prior isolation of the CD34+HSA+ cell fraction and were correspondingly decreased to an average of 2% and 5%, respectively, in the CD34+HSA- cells. In addition, the extent of gene transfer to long-term culture-initiating cells (LTC-IC) was assessed by G418 resistance. The average gene transfer to LTC-IC-derived colony-forming cells in the unsorted population was textless or = 7% in 4 experiments. FACS selection of the initially CD34+HSA+ cells increased this value to 86% and decreased it to 3% for the LTC-IC plated from the CD34+HSA- cells. Transfer of HSA gene expression to a phenotypically defined more primitive subpopulation of CD34+ cells, ie, those expressing little or no CD38, could also be shown by FACS analysis of infected populations 24 hours after infection. These findings underscore the potential use of retroviral vectors encoding HSA for the specific identification and non-toxic selection immediately after infection of retrovirally transduced populations of primitive human hematopoietic cells. In addition, such vectors should facilitate the subsequent tracking of their marked progeny using multiparameter flow cytometry.Catalog #: Product Name: 04434 MethoCult™ H4434 Classic 04531 MethoCult™ H4531 04535 MethoCult™ H4535 Enriched Without EPO 04035 MethoCult™ H4035 Optimum Without EPO 04034 MethoCult™ H4034 Optimum 04435 MethoCult™ H4435 Enriched 04534 MethoCult™ H4534 Classic Without EPO 04437 MethoCult™ Express 04436 MethoCult™ SF H4436 04064 Starter Kit for MethoCult™ H4034 Optimum 04100 MethoCult™ H4100 04230 MethoCult™ H4230 04236 MethoCult™ SF H4236 04431 MethoCult™ H4431 04464 Starter Kit for MethoCult™ H4434 Classic 04536 MethoCult™ SF H4536 04564 Starter Kit for MethoCult™ H4534 Classic Without EPO 04330 MethoCult™ H4330 Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Catalog #: 04531 Product Name: MethoCult™ H4531 Catalog #: 04535 Product Name: MethoCult™ H4535 Enriched Without EPO Catalog #: 04035 Product Name: MethoCult™ H4035 Optimum Without EPO Catalog #: 04034 Product Name: MethoCult™ H4034 Optimum Catalog #: 04435 Product Name: MethoCult™ H4435 Enriched Catalog #: 04534 Product Name: MethoCult™ H4534 Classic Without EPO Catalog #: 04437 Product Name: MethoCult™ Express Catalog #: 04436 Product Name: MethoCult™ SF H4436 Catalog #: 04064 Product Name: Starter Kit for MethoCult™ H4034 Optimum Catalog #: 04100 Product Name: MethoCult™ H4100 Catalog #: 04230 Product Name: MethoCult™ H4230 Catalog #: 04236 Product Name: MethoCult™ SF H4236 Catalog #: 04431 Product Name: MethoCult™ H4431 Catalog #: 04464 Product Name: Starter Kit for MethoCult™ H4434 Classic Catalog #: 04536 Product Name: MethoCult™ SF H4536 Catalog #: 04564 Product Name: Starter Kit for MethoCult™ H4534 Classic Without EPO Catalog #: 04330 Product Name: MethoCult™ H4330 Lewis J et al. (JAN 1996) The Journal of clinical investigation 97 1 3--5Gene modification via plug and socket" gene targeting."
Hough MR et al. (JAN 1996) Journal of immunology (Baltimore, Md. : 1950) 156 2 479--88Reduction of early B lymphocyte precursors in transgenic mice overexpressing the murine heat-stable antigen.
To study the role of the murine heat-stable Ag (HSA) in lymphocyte maturation, we generated transgenic mice in which the HSA cDNA was under the transcriptional control of the TCR V beta promoter and Ig mu enhancer. The HSA transgene was expressed during all stages of B lymphocyte maturation. Expression was first detected in the earliest lymphoid-committed progenitors, which normally do not express HSA, and subsequently reached the highest levels in pro- and pre-B cells. In bone marrow, the number of IL-7-responsive clonogenic progenitors was textless 4% of normal, whereas the frequency of earlier B lymphocyte-restricted precursors, detectable as Whitlock-Witte culture-initiating cells, was normal. Pro- and pre-B cells detected by flow cytometry were reduced by approximately 50% relative to controls. Mature splenic B cells were also reduced but to a lesser extent than in marrow, and their response to LPS stimulation was impaired. Reconstitution of SCID and BALB/c-nu/nu mice with HSA transgenic marrow indicated that the perturbations in B lymphopoiesis were not caused by a defective marrow microenvironment or by abnormal T cells. Our previous studies showed elevated HSA expression throughout thymocyte development, which resulted in a profound depletion of CD4+CD8+ double-positive and single-positive thymocytes. Together, these results indicate that HSA levels can determine the capacity of early T and B lymphoid progenitors to proliferate and survive. Therefore, HSA could serve as an important regulator during the early stages of B and T lymphopoiesis.Catalog #: Product Name: 03434 MethoCult™ GF M3434 03630 MethoCult™ M3630 03134 MethoCult™ M3134 03231 MethoCult™ M3231 03234 MethoCult™ M3234 03334 MethoCult™ M3334 03236 MethoCult™ SF M3236 Catalog #: 03434 Product Name: MethoCult™ GF M3434 Catalog #: 03630 Product Name: MethoCult™ M3630 Catalog #: 03134 Product Name: MethoCult™ M3134 Catalog #: 03231 Product Name: MethoCult™ M3231 Catalog #: 03234 Product Name: MethoCult™ M3234 Catalog #: 03334 Product Name: MethoCult™ M3334 Catalog #: 03236 Product Name: MethoCult™ SF M3236 Woods CM et al. ( 1995) Molecular medicine (Cambridge, Mass.) 1 5 506--526Taxol-induced mitotic block triggers rapid onset of a p53-independent apoptotic pathway.
BACKGROUND: At therapeutic concentrations, the antineoplastic agent taxol selectively perturbs mitotic spindle microtubules. Taxol has recently been shown to induce apoptosis, similar to the mechanism of cell death induced by other antineoplastic agents. However, taxol has shown efficacy against drug-refractory cancers, raising the possibility that this pharmacological agent may trigger an alternative apoptotic pathway. MATERIALS AND METHODS: The kinetics and IC50 of mitotic (M) block, aberrant mitosis, and cytotoxicity following taxol treatment were analyzed in human cell lines as well as normal mouse embryo fibroblasts (MEFs) and MEFs derived from p53-null mice. Apoptosis was followed by DNA gel electrophoresis and by in situ DNA end-labeling (TUNEL). RESULTS: Taxol induced two forms of cell cycle arrest: either directly in early M at prophase or, for those cells progressing through aberrant mitosis, arrest in G1 as multimininucleated cells. TUNEL labeling revealed that DNA nicking occurred within 30 min of the arrest in prophase. In contrast, G1-arrested, multimininucleated cells became TUNEL positive only after several days. In the subset of cells that became blocked directly in prophase, both wt p53-expressing and p53-null MEFs responded similarly to taxol, showing rapid onset of DNA nicking and apoptosis. However, p53-null MEFs progressing through aberrant mitosis failed to arrest in the subsequent G1 phase or to become TUNEL positive, and remained viable. CONCLUSIONS: Taxol induces two forms of cell cycle arrest, which in turn induce two independent apoptotic pathways. Arrest in prophase induces rapid onset of a p53-independent pathway, whereas G1-block and the resulting slow (3-5 days) apoptotic pathway are p53 dependent. View PublicationCatalog #: Product Name: 73312 Paclitaxel Catalog #: 73312 Product Name: Paclitaxel Podzuweit T et al. (SEP 1995) Cellular signalling 7 7 733--8Isozyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine.
Erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA), a potential inhibitor of adenosine deaminase (ADA), was tested as an inhibitor of the soluble cyclic nucleotide phosphodiesterase (PDE) isoenzymes from pig and human myocardium. Four soluble PDE activities were resolved from human papillary muscle extracts using anion exchange chromatography (DEAE Sepharose CL-6B). These activities were designated PDE I-IV according to the nomenclature of Beavo. PDE I was stimulated by Ca(2+)-calmodulin and PDE II by cGMP (1 microM). PDE III was inhibited by cGMP (1 microM) as well as SK&F 94120, and PDE IV by both rolipram and Ro 20-1724. Enzyme kinetics and inhibition constants were similar with the PDE isoenzymes from pig heart. However, porcine myocardium lacked Ca(2+)-calmodulin-stimulated soluble PDE I activity. The present data reveal that EHNA exerted a concentration-dependent inhibition of the cGMP-stimulated PDE II (cGs-PDE) (IC50: 0.8 microM (human), 2 microM (pig)) but did not inhibit the other PDE isoenzymes (IC50 textgreater 100 microM). These findings indicate that EHNA is a potent and, as far as cytosolic PDEs are concerned, selective inhibitor of cGMP-stimulated PDEs. The compound may lend itself for the rational design of other isozyme selective PDE II inhibitors and for examining the specific biological functions of cGs-PDEs. EHNA may be used in systems in which inhibition of ADA is of no concern. Conversely, dual inhibition of both ADA and cGs-PDE by EHNA may cause accumulation of two inhibitory metabolites, adenosine and cGMP, which may act in synergy to mediate diverse pharmacological responses, including antiviral, antitumour and antiarrhythmic effects.Catalog #: Product Name: 72442 EHNA Catalog #: 72442 Product Name: EHNA Stein CA (MAY 1993) Cancer research 53 10 Suppl 2239--48Suramin: a novel antineoplastic agent with multiple potential mechanisms of action.
Neben S et al. (MAR 1993) Experimental hematology 21 3 438--43Quantitation of murine hematopoietic stem cells in vitro by limiting dilution analysis of cobblestone area formation on a clonal stromal cell line.
Murine hematopoietic stem cells with varying proliferative capacity can be assayed by limiting dilution analysis of cobblestone area" (CA) formation on stromal layers in microlong-term bone marrow cultures. Cobblestone area forming cell (CAFC) frequency determined at early time points (day 7) correlates with mature stem cells measured as day 8 CFU-S�Catalog #: Product Name: 05100 MyeloCult™ H5100 Catalog #: 05100 Product Name: MyeloCult™ H5100 Keller G et al. (JAN 1993) Molecular and cellular biology 13 1 473--86Hematopoietic commitment during embryonic stem cell differentiation in culture.
We report that embryonic stem cells efficiently undergo differentiation in vitro to mesoderm and hematopoietic cells and that this in vitro system recapitulates days 6.5 to 7.5 of mouse hematopoietic development. Embryonic stem cells differentiated as embryoid bodies (EBs) develop erythroid precursors by day 4 of differentiation, and by day 6, more than 85% of EBs contain such cells. A comparative reverse transcriptase-mediated polymerase chain reaction profile of marker genes for primitive endoderm (collagen alpha IV) and mesoderm (Brachyury) indicates that both cell types are present in the developing EBs as well in normal embryos prior to the onset of hematopoiesis. GATA-1, GATA-3, and vav are expressed in both the EBs and embryos just prior to and/or during the early onset of hematopoiesis, indicating that they could play a role in the early stages of hematopoietic development both in vivo and in vitro. The initial stages of hematopoietic development within the EBs occur in the absence of added growth factors and are not significantly influenced by the addition of a broad spectrum of factors, including interleukin-3 (IL-3), IL-1, IL-6, IL-11, erythropoietin, and Kit ligand. At days 10 and 14 of differentiation, EB hematopoiesis is significantly enhanced by the addition of both Kit ligand and IL-11 to the cultures. Kinetic analysis indicates that hematopoietic precursors develop within the EBs in an ordered pattern. Precursors of the primitive erythroid lineage appear first, approximately 24 h before precursors of the macrophage and definitive erythroid lineages. Bipotential neutrophil/macrophage and multilineage precursors appear next, and precursors of the mast cell lineage develop last. The kinetics of precursor development, as well as the growth factor responsiveness of these early cells, is similar to that found in the yolk sac and early fetal liver, indicating that the onset of hematopoiesis within the EBs parallels that found in the embryo.Z. Yan and P. M. Hinkle (sep 1993) The Journal of biological chemistry 268 27 20179--84Saturable, stereospecific transport of 3,5,3'-triiodo-L-thyronine and L-thyroxine into GH4C1 pituitary cells.
The mechanism of uptake of the thyroid hormones, 3,5,3'-triiodo-L-thyronine (L-T3) and L-thyroxine (L-T4), was studied in rat pituitary GH4C1 cells. The major portion (approximately 65{\%}) of L-T3 transport was stereospecific and saturable. Transport of L-T3 was 8-10 times more rapid than transport of D-T3. [125I]L-T3 transport was saturable at microM concentrations; a Lineweaver-Burk plot was linear with Km = 0.4 microM and Vmax = 4 pmol/min/10(6) cells. Unlabeled analogs competed with [125I]L-T3 uptake in the order L-T3 {\textgreater} or = L-T4 {\textgreater} 3,3',5'-triiodo-L-thyronine (reverse-T3), D-T3, D-T4, and L-thyronine. L-T3 and L-T4 also both effectively inhibited [125I]L-T4 transport. Uptake of [125I]L-T3 was inhibited 40-55{\%} by large neutral amino acids and 77{\%} by 80 microM beta-2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid, an inhibitor selective for the L system of amino acid uptake. Conversely, L-T3 inhibited the transport of [3H]leucine by pituitary cells (IC50 = 2 microM), but D-T3 and 3,5,3'-triiodothyroacetic acid (Triac) did not. L-Leucine was transported much more efficiently (Vmax = 0.65 mumol/min/10(6) cells) than L-T3 by GH4C1 cells. The results show that L-T3 and L-T4 share the same stereospecific transport pathway in pituitary cells, that the transport mechanism is saturable at supraphysiological thyroid hormone concentrations, and that the L system is partially responsible for L-T3 transport.Catalog #: Product Name: 100-0548 3,3',5-Triiodo-L-thyronine (Sodium Salt Hydrate) Catalog #: 100-0548 Product Name: 3,3',5-Triiodo-L-thyronine (Sodium Salt Hydrate) Carteau S et al. (SEP 1993) Archives of biochemistry and biophysics 305 2 606--10Inhibitory effect of the polyanionic drug suramin on the in vitro HIV DNA integration reaction.
An obligatory step in retroviral growth is the integration of a DNA copy of the viral RNA into the genomic DNA of the host. Recombinant human immunodeficiency virus type I (HIV-1) integrase (IN) expressed in Escherichia coli efficiently catalyzes the overall in vitro integration reaction, namely the processing of the LTR ends and the strand transfer reaction. Using the 3' end of synthetic oligonucleotides which match the termini of the HIV-1 U5 LTR as substrate and supercoiled pSP65 DNA as target, we have investigated the effect of the polyanionic drug suramin on the catalytic activity of the IN protein. It was found that at stoichiometric suramin to protein ratios, suramin displays a strong inhibitory effect on both the processing and strand transfer reactions. This inhibitory effect is related to the decrease of IN protein binding efficiency to the LTR end DNA fragment.Items 565 to 576 of 6390 total
Shop ByFilter Results- Resource Type
-
- Reference 6390 items
- Area of Interest
-
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 6 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- ALDECOUNT 7 items
- ALDEFLUOR 223 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 2 items
- EasySep 760 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 12 items
- IntestiCult 142 items
- Lymphoprep 25 items
- MammoCult 50 items
- MegaCult 35 items
- MesenCult 133 items
- MethoCult 481 items
- MyeloCult 75 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 58 items
- RosetteSep 272 items
- STEMdiff 63 items
- STEMvision 9 items
- SepMate 42 items
- StemSpan 290 items
- TeSR 1581 items
- mFreSR 14 items
- Cell Type
-
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 by ϳԹ. All rights reserved.