References
Items 661 to 672 of 6390 total
- Velu CS et al. (MAY 2009) Blood 113 19 4720--8
Gfi1 regulates miR-21 and miR-196b to control myelopoiesis.
The zinc finger protein growth factor independent-1 (Gfi1) is a transcriptional repressor that is critically required for normal granulocytic differentiation. GFI1 loss-of-function mutations are found in some patients with severe congenital neutropenia (SCN). The SCN-associated GFI1-mutant proteins act as dominant negatives to block granulopoiesis through selective deregulation of a subset of GFI1 target genes. Here we show that Gfi1 is a master regulator of microRNAs, and that deregulated expression of these microRNAs recapitulates a Gfi1 loss-of-function block to granulocyte colony-stimulating factor (G-CSF)-stimulated granulopoiesis. Specifically, bone marrow cells from a GFI1-mutant SCN patient and Gfi1(-/-) mice display deregulated expression of miR-21 and miR-196B expression. Flow cytometric analysis and colony assays reveal that the overexpression or depletion of either miR induces changes in myeloid development. However, coexpression of miR-21 and miR-196b (as seen in Gfi1(-/-) mice and a GFI1N382S SCN patient) completely blocks G-CSF-induced granulopoiesis. Thus, our results not only identify microRNAs whose regulation is required during myelopoiesis, but also provide an example of synergy in microRNA biologic activity and illustrate potential mechanisms underlying SCN disease pathogenesis.Catalog #: Product Name: 09600 StemSpan™ SFEM 03534 MethoCult™ GF M3534 Catalog #: 09600 Product Name: StemSpan™ SFEM Catalog #: 03534 Product Name: MethoCult™ GF M3534 Magnifico A et al. (MAR 2009) Clinical cancer research : an official journal of the American Association for Cancer Research 15 6 2010--21Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab.
PURPOSE: The existence of tumor-initiating cells in breast cancer has profound implications for cancer therapy. In this study, we investigated the sensitivity of tumor-initiating cells isolated from human epidermal growth factor receptor type 2 (HER2)-overexpressing carcinoma cell lines to trastuzumab, a compound used for the targeted therapy of breast cancer. EXPERIMENTAL DESIGN: Spheres were analyzed by indirect immunofluorescence for HER2 cell surface expression and by real-time PCR for HER2 mRNA expression in the presence or absence of the Notch1 signaling inhibitor (GSI) or Notch1 small interfering RNA. Xenografts of HER2-overexpressing breast tumor cells were treated with trastuzumab or doxorubicin. The sphere-forming efficiency (SFE) and serial transplantability of tumors were assessed. RESULTS: In HER2-overexpressing carcinoma cell lines, cells with tumor-initiating cell properties presented increased HER2 levels compared with the bulk cell population without modification in HER2 gene amplification. HER2 levels were controlled by Notch1 signaling, as shown by the reduction of HER2 cell surface expression and lower SFE following gamma-secretase inhibition or Notch1 specific silencing. We also show that trastuzumab was able to effectively target tumor-initiating cells of HER2-positive carcinoma cell lines, as indicated by the significant decrease in SFE and the loss of serial transplantability, following treatment of HER2-overexpressing xenotransplants. CONCLUSIONS: Here, we provide evidence for the therapeutic efficacy of trastuzumab in debulking and in targeting tumor-initiating cells of HER2-overexpressing tumors. We also propose that Notch signaling regulates HER2 expression, thereby representing a critical survival pathway of tumor-initiating cells.Catalog #: Product Name: 01701 ALDEFLUOR™ Assay Buffer 01700 ALDEFLUOR™ Kit 01705 ALDEFLUOR™ DEAB Reagent Catalog #: 01701 Product Name: ALDEFLUOR™ Assay Buffer Catalog #: 01700 Product Name: ALDEFLUOR™ Kit Catalog #: 01705 Product Name: ALDEFLUOR™ DEAB Reagent Jiang F et al. (MAR 2009) Molecular cancer research : MCR 7 3 330--8Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer.
Tumor contains small population of cancer stem cells (CSC) that are responsible for its maintenance and relapse. Analysis of these CSCs may lead to effective prognostic and therapeutic strategies for the treatment of cancer patients. We report here the identification of CSCs from human lung cancer cells using Aldefluor assay followed by fluorescence-activated cell sorting analysis. Isolated cancer cells with relatively high aldehyde dehydrogenase 1 (ALDH1) activity display in vitro features of CSCs, including capacities for proliferation, self-renewal, and differentiation, resistance to chemotherapy, and expressing CSC surface marker CD133. In vivo experiments show that the ALDH1-positive cells could generate tumors that recapitulate the heterogeneity of the parental cancer cells. Immunohistochemical analysis of 303 clinical specimens from three independent cohorts of lung cancer patients and controls show that expression of ALDH1 is positively correlated with the stage and grade of lung tumors and related to a poor prognosis for the patients with early-stage lung cancer. ALDH1 is therefore a lung tumor stem cell-associated marker. These findings offer an important new tool for the study of lung CSCs and provide a potential prognostic factor and therapeutic target for treatment of the patients with lung cancer.Catalog #: Product Name: 01701 ALDEFLUOR™ Assay Buffer 01700 ALDEFLUOR™ Kit 01705 ALDEFLUOR™ DEAB Reagent Catalog #: 01701 Product Name: ALDEFLUOR™ Assay Buffer Catalog #: 01700 Product Name: ALDEFLUOR™ Kit Catalog #: 01705 Product Name: ALDEFLUOR™ DEAB Reagent Boniface K et al. (MAR 2009) The Journal of experimental medicine 206 3 535--48Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling.
Prostaglandins, particularly prostaglandin E2 (PGE2), play an important role during inflammation. This is exemplified by the clinical use of cyclooxygenase 2 inhibitors, which interfere with PGE2 synthesis, as effective antiinflammatory drugs. Here, we show that PGE2 directly promotes differentiation and proinflammatory functions of human and murine IL-17-producing T helper (Th17) cells. In human purified naive T cells, PGE2 acts via prostaglandin receptor EP2- and EP4-mediated signaling and cyclic AMP pathways to up-regulate IL-23 and IL-1 receptor expression. Furthermore, PGE2 synergizes with IL-1beta and IL-23 to drive retinoic acid receptor-related orphan receptor (ROR)-gammat, IL-17, IL-17F, CCL20, and CCR6 expression, which is consistent with the reported Th17 phenotype. While enhancing Th17 cytokine expression mainly through EP2, PGE2 differentially regulates interferon (IFN)-gamma production and inhibits production of the antiinflammatory cytokine IL-10 in Th17 cells predominantly through EP4. Furthermore, PGE2 is required for IL-17 production in the presence of antigen-presenting cells. Hence, the combination of inflammatory cytokines and noncytokine immunomodulators, such as PGE2, during differentiation and activation determines the ultimate phenotype of Th17 cells. These findings, together with the altered IL-12/IL-23 balance induced by PGE2 in dendritic cells, further highlight the crucial role of the inflammatory microenvironment in Th17 cell development and regulation.Catalog #: Product Name: 72192 Prostaglandin E2 Catalog #: 72192 Product Name: Prostaglandin E2 Maldonado-Arocho FJ and Bradley KA (MAY 2009) Infection and immunity 77 5 2036--42Anthrax edema toxin induces maturation of dendritic cells and enhances chemotaxis towards macrophage inflammatory protein 3beta.
Bacillus anthracis secretes two bipartite toxins, edema toxin (ET) and lethal toxin (LT), which impair immune responses and contribute directly to the pathology associated with the disease anthrax. Edema factor, the catalytic subunit of ET, is an adenylate cyclase that impairs host defenses by raising cellular cyclic AMP (cAMP) levels. Synthetic cAMP analogues and compounds that raise intracellular cAMP levels lead to phenotypic and functional changes in dendritic cells (DCs). Here, we demonstrate that ET induces a maturation state in human monocyte-derived DCs (MDDCs) similar to that induced by lipopolysaccharide (LPS). ET treatment results in downregulation of DC-SIGN, a marker of immature DCs, and upregulation of DC maturation markers CD83 and CD86. Maturation of DCs by ET is accompanied by an increased ability to migrate toward the lymph node-homing chemokine macrophage inflammatory protein 3beta, like LPS-matured DCs. Interestingly, cotreating with LT differentially affects the ET-induced maturation of MDDCs while not inhibiting ET-induced migration. These findings reveal a mechanism by which ET impairs normal innate immune function and may explain the reported adjuvant effect of ET.Catalog #: Product Name: 15028 RosetteSep™ Human Monocyte Enrichment Cocktail Catalog #: 15028 Product Name: RosetteSep™ Human Monocyte Enrichment Cocktail Milsom MD et al. (MAY 2009) Blood 113 21 5111--20Ectopic HOXB4 overcomes the inhibitory effect of tumor necrosis factor-alpha on Fanconi anemia hematopoietic stem and progenitor cells.
Ectopic delivery of HOXB4 elicits the expansion of engrafting hematopoietic stem cells (HSCs). We hypothesized that inhibition of tumor necrosis factor-alpha (TNF-alpha) signaling may be central to the self-renewal signature of HOXB4. Because HSCs derived from Fanconi anemia (FA) knockout mice are hypersensitive to TNF-alpha, we studied Fancc(-/-) HSCs to determine the physiologic effects of HOXB4 on TNF-alpha sensitivity and the relationship of these effects to the engraftment defect of FA HSCs. Overexpression of HOXB4 reversed the in vitro hypersensitivity to TNF-alpha of Fancc(-/-) HSCs and progenitors (P) and partially rescued the engraftment defect of these cells. Coexpression of HOXB4 and the correcting FA-C protein resulted in full correction compared with wild-type (WT) HSCs. Ectopic expression of HOXB4 resulted in a reduction in both apoptosis and reactive oxygen species in Fancc(-/-) but not WT HSC/P. HOXB4 overexpression was also associated with a significant reduction in surface expression of TNF-alpha receptors on Fancc(-/-) HSC/P. Finally, enhanced engraftment was seen even when HOXB4 was expressed in a time-limited fashion during in vivo reconstitution. Thus, the HOXB4 engraftment signature may be related to its effects on TNF-alpha signaling, and this pathway may be a molecular target for timed pharmacologic manipulation of HSC during reconstitution. View PublicationCatalog #: Product Name: 09600 StemSpan™ SFEM Catalog #: 09600 Product Name: StemSpan™ SFEM Makaroff LE et al. (MAR 2009) Proceedings of the National Academy of Sciences of the United States of America 106 12 4799--804Postthymic maturation influences the CD8 T cell response to antigen.
Complete T cell development requires postthymic maturation, and we investigated the influence of this ontological period on the CD8 T cell response to infection by comparing responses of mature CD8 T cells with those of recent thymic emigrants (RTEs). When activated with a noninflammatory stimulus or a bacterial or viral pathogen, CD8 RTEs generated a lower proportion of cytokine-producing effector cells and long-lived memory precursors compared with their mature counterparts. Although peripheral T cell maturation is complete within several weeks after thymic egress, RTE-derived memory cells continued to express inappropriate levels of memory cell markers and display an altered pattern of cytokine production, even 8 weeks after infection. When rechallenged, RTE-derived memory cells generated secondary effector cells that were phenotypically and functionally equivalent to those generated by their mature counterparts. The defects at the effector and memory stages were not associated with differences in the expression of T cell receptor-, costimulation-, or activation-associated cell surface markers yet were associated with lower Ly6C expression levels at the effector stage. This work demonstrates that the stage of postthymic maturation influences cell fate decisions and cytokine profiles of stimulated CD8 T cells, with repercussions that are apparent long after cells have progressed from the RTE compartment.Sun J et al. (APR 2009) The Journal of biological chemistry 284 17 11039--47The D816V mutation of c-Kit circumvents a requirement for Src family kinases in c-Kit signal transduction.
The receptor tyrosine kinase c-Kit plays a critical role in hematopoiesis, and gain-of-function mutations of the receptor are frequently seen in several malignancies, including acute myeloid leukemia, gastrointestinal stromal tumors, and testicular carcinoma. The most common mutation of c-Kit in these disorders is a substitution of the aspartic acid residue in position 816 to a valine (D816V), leading to constitutive activation of the receptor. In this study, we aimed to investigate the role of Src family kinases in c-Kit/D816V signaling. Src family kinases are necessary for the phosphorylation of wild-type c-Kit as well as of activation of downstream signaling pathways including receptor ubiquitination and the Ras/Mek/Erk pathway. Our data demonstrate that, unlike wild-type c-Kit, the phosphorylation of c-Kit/D816V is not dependent on Src family kinases. In addition, we found that neither receptor ubiquitination nor Erk activation by c-Kit/D816V required activation of Src family kinases. In vitro kinase assay using synthetic peptides revealed that c-Kit/D816V had an altered substrate specificity resembling Src and Abl tyrosine kinases. We further present evidence that, in contrast to wild-type c-Kit, Src family kinases are dispensable for c-Kit/D816V cell survival, proliferation, and colony formation. Taken together, we demonstrate that the signal transduction pathways mediated by c-Kit/D816V are markedly different from those activated by wild-type c-Kit and that altered substrate specificity of c-Kit circumvents a need for Src family kinases in signaling of growth and survival, thereby contributing to the transforming potential of c-Kit/D816V. View PublicationCatalog #: Product Name: 03231 MethoCult™ M3231 Catalog #: 03231 Product Name: MethoCult™ M3231 Wang X et al. (MAR 2009) Journal of immunology (Baltimore, Md. : 1950) 182 6 3597--608MEKK3 is essential for lymphopenia-induced T cell proliferation and survival.
T cell homeostasis is crucial for maintaining an efficient and balanced T cell immunity. The interaction between TCR and self peptide (sp) MHC ligands is known to be the key driving force in this process, and it is believed to be functionally and mechanistically different from that initiated by the antigenic TCR stimulation. Yet, very little is known about the downstream signaling events triggered by this TCR-spMHC interaction and how they differ from those triggered by antigenic TCR stimulation. In this study, we show that T cell conditional ablation of MEKK3, a Ser/Thr kinase in the MAPK cascade, causes a significant reduction in peripheral T cell numbers in the conditional knockout mice, but does not perturb thymic T cell development and maturation. Using an adoptive mixed transfer method, we show that MEKK3-deficient T cells are severely impaired in lymphopenia-induced cell proliferation and survival. Interestingly, the Ag-induced T cell proliferation proceeds normally in the absence of MEKK3. Finally, we found that the activity of ERK1/2, but not p38 MAPK, was attenuated during the lymphopenia-driven response in MEKK3-deficient T cells. Together, these data suggest that MEKK3 may play a crucial selective role for spMHC-mediated T cell homeostasis.Eash KJ et al. (MAY 2009) Blood 113 19 4711--9CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions.
The number of neutrophils in the blood is tightly regulated to ensure adequate protection against microbial pathogens while minimizing damage to host tissue. Neutrophil homeostasis in the blood is achieved through a balance of neutrophil production, release from the bone marrow, and clearance from the circulation. Accumulating evidence suggests that signaling by CXCL12, through its major receptor CXCR4, plays a key role in maintaining neutrophil homeostasis. Herein, we generated mice with a myeloid lineage-restricted deletion of CXCR4 to define the mechanisms by which CXCR4 signals regulate this process. We show that CXCR4 negatively regulates neutrophil release from the bone marrow in a cell-autonomous fashion. However, CXCR4 is dispensable for neutrophil clearance from the circulation. Neutrophil mobilization responses to granulocyte colony-stimulating factor (G-CSF), CXCL2, or Listeria monocytogenes infection are absent or impaired, suggesting that disruption of CXCR4 signaling may be a common step mediating neutrophil release. Collectively, these data suggest that CXCR4 signaling maintains neutrophil homeostasis in the blood under both basal and stress granulopoiesis conditions primarily by regulating neutrophil release from the bone marrow. View PublicationCatalog #: Product Name: 03434 MethoCult™ GF M3434 Catalog #: 03434 Product Name: MethoCult™ GF M3434 Hirano I et al. (AUG 2009) The Journal of biological chemistry 284 33 22155--65Depletion of Pleckstrin homology domain leucine-rich repeat protein phosphatases 1 and 2 by Bcr-Abl promotes chronic myelogenous leukemia cell proliferation through continuous phosphorylation of Akt isoforms.
The constitutive activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway commonly occurs in cancers and is a crucial event in tumorigenesis. Chronic myelogenous leukemia (CML) is characterized by a reciprocal chromosomal translocation (9;22) that generates the Bcr-Abl fusion gene. The PI3K/Akt pathway is activated by Bcr-Abl chimera protein and mediates the leukemogenesis in CML. However, the mechanism by which Bcr-Abl activates the PI3K/Akt pathway is not completely understood. In the present study, we found that pleckstrin homology domain leucine-rich repeat protein phosphatases 1 and 2 (PHLPP1 and PHLPP2) were depleted in CML cells. We investigated the interaction between PHLPPs and Bcr-Abl in CML cell lines and Bcr-Abl+ progenitor cells from CML patients. The Abl kinase inhibitors and depletion of Bcr-Abl induced the expression of PHLPP1 and PHLPP2, which dephosphorylated Ser-473 on Akt1, -2, and -3, resulting in inhibited proliferation of CML cells. The reduction of PHLPP1 and PHLPP2 expression by short interfering RNA in CML cells weakened the Abl kinase inhibitor-mediated inhibition of proliferation. In colony-forming unit-granulocyte, erythroid, macrophage, megakaryocyte; colony-forming unit-granulocyte, macrophage; and burst-forming unit-erythroid, treatment with the Abl kinase inhibitors and depletion of Bcr-Abl induced PHLPP1 and PHLPP2 expression and inhibited colony formation of Bcr-Abl+ progenitor cells, whereas depletion of PHLPP1 and PHLPP2 weakened the inhibition of colony formation activity by the Abl kinase inhibitors in Bcr-Abl+ progenitor cells. Thus, Bcr-Abl represses the expression of PHLPP1 and PHLPP2 and continuously activates Akt1, -2, and -3 via phosphorylation on Ser-473, resulting in the proliferation of CML cells. View PublicationCatalog #: Product Name: 01701 ALDEFLUOR™ Assay Buffer 04435 MethoCult™ H4435 Enriched 01700 ALDEFLUOR™ Kit 01705 ALDEFLUOR™ DEAB Reagent Catalog #: 01701 Product Name: ALDEFLUOR™ Assay Buffer Catalog #: 04435 Product Name: MethoCult™ H4435 Enriched Catalog #: 01700 Product Name: ALDEFLUOR™ Kit Catalog #: 01705 Product Name: ALDEFLUOR™ DEAB Reagent Choi K-D et al. (MAR 2009) Stem cells (Dayton, Ohio) 27 3 559--67Hematopoietic and endothelial differentiation of human induced pluripotent stem cells.
Induced pluripotent stem cells (iPSCs) provide an unprecedented opportunity for modeling of human diseases in vitro, as well as for developing novel approaches for regenerative therapy based on immunologically compatible cells. In this study, we employed an OP9 differentiation system to characterize the hematopoietic and endothelial differentiation potential of seven human iPSC lines obtained from human fetal, neonatal, and adult fibroblasts through reprogramming with POU5F1, SOX2, NANOG, and LIN28 and compared it with the differentiation potential of five human embryonic stem cell lines (hESC, H1, H7, H9, H13, and H14). Similar to hESCs, all iPSCs generated CD34(+)CD43(+) hematopoietic progenitors and CD31(+)CD43(-) endothelial cells in coculture with OP9. When cultured in semisolid media in the presence of hematopoietic growth factors, iPSC-derived primitive blood cells formed all types of hematopoietic colonies, including GEMM colony-forming cells. Human induced pluripotent cells (hiPSCs)-derived CD43(+) cells could be separated into the following phenotypically defined subsets of primitive hematopoietic cells: CD43(+)CD235a(+)CD41a(+/-) (erythro-megakaryopoietic), lin(-)CD34(+)CD43(+)CD45(-) (multipotent), and lin(-)CD34(+)CD43(+)CD45(+) (myeloid-skewed) cells. Although we observed some variations in the efficiency of hematopoietic differentiation between different hiPSCs, the pattern of differentiation was very similar in all seven tested lines obtained through reprogramming of human fetal, neonatal, or adult fibroblasts with three or four genes. Although several issues remain to be resolved before iPSC-derived blood cells can be administered to humans for therapeutic purposes, patient-specific iPSCs can already be used for characterization of mechanisms of blood diseases and for identification of molecules that can correct affected genetic networks. View PublicationCatalog #: Product Name: 04435 MethoCult™ H4435 Enriched Catalog #: 04435 Product Name: MethoCult™ H4435 Enriched Items 661 to 672 of 6390 total
Shop ByFilter Results- Resource Type
-
- Reference 6390 items
- Area of Interest
-
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 6 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- ALDECOUNT 7 items
- ALDEFLUOR 223 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 2 items
- EasySep 760 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 12 items
- IntestiCult 142 items
- Lymphoprep 25 items
- MammoCult 50 items
- MegaCult 35 items
- MesenCult 133 items
- MethoCult 481 items
- MyeloCult 75 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 58 items
- RosetteSep 272 items
- STEMdiff 63 items
- STEMvision 9 items
- SepMate 42 items
- StemSpan 290 items
- TeSR 1581 items
- mFreSR 14 items
- Cell Type
-
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 by ϳԹ. All rights reserved.