References
Items 61 to 72 of 6390 total
- Deglincerti A et al. (NOV 2016) Nature protocols 11 11 2223--2232
Self-organization of human embryonic stem cells on micropatterns.
Fate allocation in the gastrulating embryo is spatially organized as cells differentiate into specialized cell types depending on their positions with respect to the body axes. There is a need for in vitro protocols that allow the study of spatial organization associated with this developmental transition. Although embryoid bodies and organoids can exhibit some spatial organization of differentiated cells, methods that generate embryoid bodies or organoids do not yield consistent and fully reproducible results. Here, we describe a micropatterning approach in which human embryonic stem cells are confined to disk-shaped, submillimeter colonies. After 42 h of BMP4 stimulation, cells form self-organized differentiation patterns in concentric radial domains, which express specific markers associated with the embryonic germ layers, reminiscent of gastrulating embryos. Our protocol takes 3 d; it uses commercial microfabricated slides (from CYTOO), human laminin-521 (LN-521) as extracellular matrix coating, and either conditioned or chemically defined medium (mTeSR). Differentiation patterns within individual colonies can be determined by immunofluorescence and analyzed with cellular resolution. Both the size of the micropattern and the type of medium affect the patterning outcome. The protocol is appropriate for personnel with basic stem cell culture training. This protocol describes a robust platform for quantitative analysis of the mechanisms associated with pattern formation at the onset of gastrulation.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Milush JM et al. (NOV 2009) Blood 114 23 4823--31Functionally distinct subsets of human NK cells and monocyte/DC-like cells identified by coexpression of CD56, CD7, and CD4.
The lack of natural killer (NK) cell-specific markers, as well as the overlap among several common surface antigens and functional properties, has obscured the delineation between NK cells and dendritic cells. Here, novel subsets of peripheral blood CD3/14/19(neg) NK cells and monocyte/dendritic cell (DC)-like cells were identified on the basis of CD7 and CD4 expression. Coexpression of CD7 and CD56 differentiates NK cells from CD56+ monocyte/DC-like cells, which lack CD7. In contrast to CD7+CD56+ NK cells, CD7(neg)CD56+ cells lack expression of NK cell-associated markers, but share commonalities in their expression of various monocyte/DC-associated markers. Using CD7, we observed approximately 60% of CD4+CD56+ cells were CD7(neg) cells, indicating the actual frequency of activated CD4+ NK cells is much lower in the blood than previously recognized. Functionally, only CD7+ NK cells secrete gamma interferon (IFNgamma) and degranulate after interleukin-12 (IL-12) plus IL-18 or K562 target cell stimulation. Furthermore, using CD7 to separate CD56+ NK cells and CD56+ myeloid cells, we demonstrate that unlike resting CD7+CD56+ NK cells, the CD7(neg)CD56+ myeloid cells stimulate a potent allogeneic response. Our data indicate that CD7 and CD56 coexpression discriminates NK cells from CD7(neg)CD56+ monocyte/DC-like cells, thereby improving our ability to study the intricacies of NK-cell subset phenotypes and functions in vivo.Catalog #: Product Name: 19051 EasySep™ Human T Cell Enrichment Kit Catalog #: 19051 Product Name: EasySep™ Human T Cell Enrichment Kit Xia G et al. (OCT 2013) Journal of Molecular Neuroscience 51 2 237--248Generation of human-induced pluripotent stem cells to model spinocerebellar ataxia type 2 in vitro
Spinocerebellar ataxia type 2 (SCA2) is caused by triple nucleotidebackslashnrepeat (CAG) expansion in the coding region of the ATAXN2 gene onbackslashnchromosome 12, which produces an elongated, toxic polyglutamine tract,backslashnleading to Purkinje cell loss. There is currently no effective therapy.backslashnOne of the main obstacles that hampers therapeutic development is lackbackslashnof an ideal disease model. In this study, we have generated andbackslashncharacterized SCA2-induced pluripotent stem (iPS) cell lines as an inbackslashnvitro cell model. Dermal fibroblasts (FBs) were harvested from primarybackslashncultures of skin explants obtained from a SCA2 subject and a healthybackslashnsubject. For reprogramming, hOct4, hSox2, hKlf4, and hc-Myc werebackslashntransduced to passage-3 FBs by retroviral infection. Both SCA2 iPS andbackslashncontrol iPS cells were successfully generated and showed typical stembackslashncell growth patterns with normal karyotype. All iPS cell lines expressedbackslashnstem cell markers and differentiated in vitro into cells from threebackslashnembryonic germ layers. Upon in vitro neural differentiation, SCA2 iPSbackslashncells showed abnormality in neural rosette formation but successfullybackslashndifferentiated into neural stem cells (NSCs) and subsequent neuralbackslashncells. SCA2 and normal FBs showed a comparable level of ataxin-2backslashnexpression; whereas SCA2 NSCs showed less ataxin-2 expression thanbackslashnnormal NSCs and SCA2 FBs. Within the neural lineage, neurons had thebackslashnmost abundant expression of ataxin-2. Time-lapsed neural growth assaybackslashnindicated terminally differentiated SCA2 neural cells were short-livedbackslashncompared with control neural cells. The expanded CAG repeats of SCA2backslashnwere stable throughout reprogramming and neural differentiation. Inbackslashnconclusion, we have established the first disease-specific human SCA2backslashniPS cell line. These mutant iPS cells have the potential for neuralbackslashndifferentiation. These differentiated neural cells harboring mutationsbackslashnare invaluable for the study of SCA2 pathogenesis and therapeutic drugbackslashndevelopment.Catalog #: Product Name: 05854 ™ Catalog #: 05854 Product Name: ™ Cai S et al. (APR 2011) Clinical cancer research : an official journal of the American Association for Cancer Research 17 8 2195--206Humanized bone marrow mouse model as a preclinical tool to assess therapy-mediated hematotoxicity.
PURPOSE: Preclinical in vivo studies can help guide the selection of agents and regimens for clinical testing. However, one of the challenges in screening anticancer therapies is the assessment of off-target human toxicity. There is a need for in vivo models that can simulate efficacy and toxicities of promising therapeutic regimens. For example, hematopoietic cells of human origin are particularly sensitive to a variety of chemotherapeutic regimens, but in vivo models to assess potential toxicities have not been developed. In this study, a xenograft model containing humanized bone marrow is utilized as an in vivo assay to monitor hematotoxicity. EXPERIMENTAL DESIGN: A proof-of-concept, temozolomide-based regimen was developed that inhibits tumor xenograft growth. This regimen was selected for testing because it has been previously shown to cause myelosuppression in mice and humans. The dose-intensive regimen was administered to NOD.Cg-Prkdc(scid)IL2rg(tm1Wjl)/Sz (NOD/SCID/γchain(null)), reconstituted with human hematopoietic cells, and the impact of treatment on human hematopoiesis was evaluated. RESULTS: The dose-intensive regimen resulted in significant decreases in growth of human glioblastoma xenografts. When this regimen was administered to mice containing humanized bone marrow, flow cytometric analyses indicated that the human bone marrow cells were significantly more sensitive to treatment than the murine bone marrow cells and that the regimen was highly toxic to human-derived hematopoietic cells of all lineages (progenitor, lymphoid, and myeloid). CONCLUSIONS: The humanized bone marrow xenograft model described has the potential to be used as a platform for monitoring the impact of anticancer therapies on human hematopoiesis and could lead to subsequent refinement of therapies prior to clinical evaluation.Catalog #: Product Name: 03434 MethoCult™ GF M3434 04434 MethoCult™ H4434 Classic 84434 MethoCult™ GF H84434 Catalog #: 03434 Product Name: MethoCult™ GF M3434 Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Catalog #: 84434 Product Name: MethoCult™ GF H84434 Sun Y et al. (MAR ) PLOS ONE 3 e0118771Properties of Neurons Derived from Induced Pluripotent Stem Cells of Gaucher Disease Type 2 Patient Fibroblasts: Potential Role in Neuropathology
Gaucher disease (GD) is caused by insufficient activity of acid $\$-glucosidase (GCase) resulting from mutations in GBA1. To understand the pathogenesis of the neuronopathic GD, induced pluripotent stem cells (iPSCs) were generated from fibroblasts isolated from three GD type 2 (GD2) and 2 unaffected (normal and GD carrier) individuals. The iPSCs were converted to neural precursor cells (NPCs) which were further differentiated into neurons. Parental GD2 fibroblasts as well as iPSCs, NPCs, and neurons had similar degrees of GCase deficiency. Lipid analyses showed increases of glucosylsphingosine and glucosylceramide in the GD2 cells. In addition, GD2 neurons showed increased $\$-synuclein protein compared to control neurons. Whole cell patch-clamping of the GD2 and control iPSCs-derived neurons demonstrated excitation characteristics of neurons, but intriguingly, those from GD2 exhibited consistently less negative resting membrane potentials with various degree of reduction in action potential amplitudes, sodium and potassium currents. Culture of control neurons in the presence of the GCase inhibitor (conduritol B epoxide) recapitulated these findings, providing a functional link between decreased GCase activity in GD and abnormal neuronal electrophysiological properties. To our knowledge, this study is first to report abnormal electrophysiological properties in GD2 iPSC-derived neurons that may underlie the neuropathic phenotype in Gaucher disease.Catalog #: Product Name: 05854 ™ 85850 ձ™1 34811 ±™800 05835 STEMdiff™ Neural Induction Medium Catalog #: 05854 Product Name: ™ Catalog #: 85850 Product Name: ձ™1 Catalog #: 34811 Product Name: ±™800 Catalog #: 05835 Product Name: STEMdiff™ Neural Induction Medium Frecha C et al. (OCT 2009) Blood 114 15 3173--80Efficient and stable transduction of resting B lymphocytes and primary chronic lymphocyte leukemia cells using measles virus gp displaying lentiviral vectors.
Up to now, no lentiviral vector (LV) tool existed to govern efficient and stable gene delivery into quiescent B lymphocytes, which hampers its application in gene therapy and immunotherapy areas. Here, we report that LVs incorporating measles virus (MV) glycoproteins, H and F, on their surface allowed transduction of 50% of quiescent B cells, which are not permissive to VSVG-LV transduction. This high transduction level correlated with B-cell SLAM expression and was not at cost of cell-cycle entry or B-cell activation. Moreover, the naive and memory phenotypes of transduced resting B cells were maintained. Importantly, H/F-LVs represent the first tool permitting stable transduction of leukemic cancer cells, B-cell chronic lymphocytic leukemia cells, blocked in G(0)/G(1) early phase of the cell cycle. Thus, H/F-LV transduction overcomes the limitations of current LVs by making B cell-based gene therapy and immunotherapy applications feasible. These new LVs will facilitate antibody production and the study of gene functions in these healthy and cancer immune cells.Catalog #: Product Name: 15021 RosetteSep™ Human T Cell Enrichment Cocktail Catalog #: 15021 Product Name: RosetteSep™ Human T Cell Enrichment Cocktail Denning-Kendall P et al. (JAN 2003) Stem cells (Dayton, Ohio) 21 6 694--701Cobblestone area-forming cells in human cord blood are heterogeneous and differ from long-term culture-initiating cells.
The long-term culture-initiating cell (LTC-IC) assay is a physiological approach to the quantitation of primitive human hematopoietic cells. The readout using identification of cobblestone area-forming cells (CAFC) has gained popularity over the LTC-IC readout where cells are subcultured in a colony-forming cell assay. However, comparing the two assays, cord blood (CB) mononuclear cell (MNC) samples were found to contain a higher frequency of CAFC than LTC-IC (126 +/- 83 versus 40 +/- 31 per 10(5) cells, p = 0.0001). Overall, 60% of week-5 cobblestones produced by CB MNC were not functional LTC-IC and were classified as false." Separation of CB MNC using immunomagnetic columns showed that false cobblestones were CD34(-)/lineage(+). Purified CD34(+) cells�Catalog #: Product Name: 09600 StemSpan™ SFEM 09500 BIT 9500 Serum Substitute Catalog #: 09600 Product Name: StemSpan™ SFEM Catalog #: 09500 Product Name: BIT 9500 Serum Substitute D. Gao et al. (SEP 2014) Cell 159 1 176--187Organoid cultures derived from patients with advanced prostate cancer.
The lack of in vitro prostate cancer models that recapitulate the diversity of human prostate cancer has hampered progress in understanding disease pathogenesis and therapy response. Using a 3D organoid system, we report success in long-term culture of prostate cancer from biopsy specimens and circulating tumor cells. The first seven fully characterized organoid lines recapitulate the molecular diversity of prostate cancer subtypes, including TMPRSS2-ERG fusion, SPOP mutation, SPINK1 overexpression, and CHD1 loss. Whole-exome sequencing shows a low mutational burden, consistent with genomics studies, but with mutations in FOXA1 and PIK3R1, as well as in DNA repair and chromatin modifier pathways that have been reported in advanced disease. Loss of p53 and RB tumor suppressor pathway function are the most common feature shared across the organoid lines. The methodology described here should enable the generation of a large repertoire of patient-derived prostate cancer lines amenable to genetic and pharmacologic studies.Catalog #: Product Name: 15122 RosetteSep™ Human CD45 Depletion Cocktail Catalog #: 15122 Product Name: RosetteSep™ Human CD45 Depletion Cocktail Mazur-Kolecka B et al. (MAY 2012) Journal of neuroscience research 90 5 999--1010Effect of DYRK1A activity inhibition on development of neuronal progenitors isolated from Ts65Dn mice.
Overexpression of dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A), encoded by a gene located in the Down syndrome (DS) critical region, is considered a major contributor to developmental abnormalities in DS. DYRK1A regulates numerous genes involved in neuronal commitment, differentiation, maturation, and apoptosis. Because alterations of neurogenesis could lead to impaired brain development and mental retardation in individuals with DS, pharmacological normalization of DYRK1A activity has been postulated as DS therapy. We tested the effect of harmine, a specific DYRK1A inhibitor, on the development of neuronal progenitor cells (NPCs) isolated from the periventricular zone of newborn mice with segmental trisomy 16 (Ts65Dn mice), a mouse model for DS that overexpresses Dyrk1A by 1.5-fold. Trisomy did not affect the ability of NPCs to expand in culture. Twenty-four hours after stimulation of migration and neuronal differentiation, NPCs showed increased expression of Dyrk1A, particularly in the trisomic cultures. After 7 days, NPCs developed into a heterogeneous population of differentiating neurons and astrocytes that expressed Dyrk1A in the nuclei. In comparison with disomic cells, NPCs with trisomy showed premature neuronal differentiation and enhanced γ-aminobutyric acid (GABA)-ergic differentiation, but astrocyte development was unchanged. Harmine prevented premature neuronal maturation of trisomic NPCs but not acceleration of GABA-ergic development. In control NPCs, harmine treatment caused altered neuronal development of NPCs, similar to that in trisomic NPCs with Dyrk1A overexpression. This study suggests that pharmacological normalization of DYRK1A activity may have a potential role in DS therapy.Catalog #: Product Name: 05707 NeuroCult™ Chemical Dissociation Kit (Mouse) 05700 NeuroCult™ Basal Medium (Mouse & Rat) 05701 NeuroCult™ Proliferation Supplement (Mouse & Rat) 05702 NeuroCult™ Proliferation Kit (Mouse & Rat) 05703 NeuroCult™ Differentiation Supplement (Mouse & Rat) 05704 NeuroCult™ Differentiation Kit (Mouse & Rat) Catalog #: 05707 Product Name: NeuroCult™ Chemical Dissociation Kit (Mouse) Catalog #: 05700 Product Name: NeuroCult™ Basal Medium (Mouse & Rat) Catalog #: 05701 Product Name: NeuroCult™ Proliferation Supplement (Mouse & Rat) Catalog #: 05702 Product Name: NeuroCult™ Proliferation Kit (Mouse & Rat) Catalog #: 05703 Product Name: NeuroCult™ Differentiation Supplement (Mouse & Rat) Catalog #: 05704 Product Name: NeuroCult™ Differentiation Kit (Mouse & Rat) Zielske SP et al. (NOV 2003) The Journal of clinical investigation 112 10 1561--70In vivo selection of MGMT(P140K) lentivirus-transduced human NOD/SCID repopulating cells without pretransplant irradiation conditioning.
Infusion of transduced hematopoietic stem cells into nonmyeloablated hosts results in ineffective in vivo levels of transduced cells. To increase the proportion of transduced cells in vivo, selection based on P140K O6-methylguanine-DNA-methyltransferase (MGMT[P140K]) gene transduction and O6-benzylguanine/1,3-bis(2-chloroethyl)-1-nitrosourea (BG/BCNU) treatment has been devised. In this study, we transduced human NOD/SCID repopulating cells (SRCs) with MGMT(P140K) using a lentiviral vector and infused them into BG/BCNU-conditioned NOD/SCID mice before rounds of BG/BCNU treatment as a model for in vivo selection. Engraftment was not observed until the second round of BG/BCNU treatment, at which time human cells emerged to compose up to 20% of the bone marrow. Furthermore, 99% of human CFCs derived from NOD/SCID mice were positive for provirus as measured by PCR, compared with 35% before transplant and 11% in untreated irradiation-preconditioned mice, demonstrating selection. Bone marrow showed BG-resistant O6-alkylguanine-DNA-alkyltransferase (AGT) activity, and CFUs were stained intensely for AGT protein, indicating high transgene expression. Real-time PCR estimates of the number of proviral insertions in individual CFUs ranged from 3 to 22. Selection resulted in expansion of one or more SRC clones containing similar numbers of proviral copies per mouse. To our knowledge, these results provide the first evidence of potent in vivo selection of MGMT(P140K) lentivirus-transduced human SRCs following BG/BCNU treatment. View PublicationCatalog #: Product Name: 04434 MethoCult™ H4434 Classic Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Lippmann ES et al. (AUG 2012) Nature biotechnology 30 8 783--791Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells.
The blood-brain barrier (BBB) is crucial to the health of the brain and is often compromised in neurological disease. Moreover, because of its barrier properties, this endothelial interface restricts uptake of neurotherapeutics. Thus, a renewable source of human BBB endothelium could spur brain research and pharmaceutical development. Here we show that endothelial cells derived from human pluripotent stem cells (hPSCs) acquire BBB properties when co-differentiated with neural cells that provide relevant cues, including those involved in Wnt/β-catenin signaling. The resulting endothelial cells have many BBB attributes, including well-organized tight junctions, appropriate expression of nutrient transporters and polarized efflux transporter activity. Notably, they respond to astrocytes, acquiring substantial barrier properties as measured by transendothelial electrical resistance (1,450 ± 140 Ω cm2), and they possess molecular permeability that correlates well with in vivo rodent blood-brain transfer coefficients.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 T. Derakhshan et al. ( 2018) Stem cells international 2018 2136193Development of Human Mast Cells from Hematopoietic Stem Cells within a 3D Collagen Matrix: Effect of Stem Cell Media on Mast Cell Generation.
Mast cells (MCs) arise from hematopoietic stem cells (HSCs) that mature within vascularized tissues. Fibroblasts and endothelial cells (ECs) play a role in the maturation of HSCs in the tissues. Due to difficulties in isolating MCs from tissues, large numbers of committed MC precursors can be generated in 2D culture systems with the use of differentiation factors. Since MCs are tissue-resident cells, the development of a 3D tissue-engineered model with ancillary cells that more closely mimics the 3D in vivo microenvironment has greater relevance for MC studies. The goals of this study were to show that MCs can be derived from HSCs within a 3D matrix and to determine a media to support MCs, fibroblasts, and ECs. The results show that HSCs within a collagen matrix cultured in StemSpan media with serum added at the last week yielded a greater number of c-kit+ cells and a greater amount of histamine granules compared to other media tested. Media supplemented with serum were necessary for EC survival, while fibroblasts survived irrespective of serum with higher cell yields in StemSpan. This work demonstrates the development of functional MCs within a 3D collagen matrix using a stem cell media that supports fibroblast and ECs.Catalog #: Product Name: 09600 StemSpan™ SFEM Catalog #: 09600 Product Name: StemSpan™ SFEM Items 61 to 72 of 6390 total
Shop ByFilter Results- Resource Type
-
- Reference 6390 items
- Area of Interest
-
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 6 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- ALDECOUNT 7 items
- ALDEFLUOR 223 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 2 items
- EasySep 760 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 12 items
- IntestiCult 142 items
- Lymphoprep 25 items
- MammoCult 50 items
- MegaCult 35 items
- MesenCult 133 items
- MethoCult 481 items
- MyeloCult 75 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 58 items
- RosetteSep 272 items
- STEMdiff 63 items
- STEMvision 9 items
- SepMate 42 items
- StemSpan 290 items
- TeSR 1581 items
- mFreSR 14 items
- Cell Type
-
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 by ϳԹ. All rights reserved.