References
Items 97 to 108 of 6390 total
- Li X et al. (MAY 2017) Stem cell research 21 32--39
Pyrimidoindole derivative UM171 enhances derivation of hematopoietic progenitor cells from human pluripotent stem cells.
In the field of hematopoietic regeneration, deriving hematopoietic stem cells (HSCs) from pluripotent stem cells with engraftment potential is the central mission. Unstable hematopoietic differentiation protocol due to variation factors such as serums and feeder cells, remains a major technical issue impeding the screening of key factors for the derivation of HSCs. In combination with hematopoietic cytokines, UM171 has the capacity to facilitate the maintenance and expansion of human primary HSCs in vitro. Here, using a serum-free, feeder-free, and chemically defined induction protocol, we observed that UM171 enhanced hematopoietic derivation through the entire process of hematopoietic induction in vitro. UM171 facilitated generation of robust CD34(+)CD45(+) derivatives that formed more and larger sized CFU-GM as well as larger sized CFU-Mix. In our protocol, the derived hematopoietic progenitors failed to engraft in NOG mice, indicating the absence of long-term HSC from these progenitors. In combination with other factors and protocols, UM171 might be broadly used for hematopoietic derivation from human pluripotent stem cells in vitro.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Friedel T et al. (MAR 2016) Stem cells and development 25 9 729--39CD30 Receptor-Targeted Lentiviral Vectors for Human Induced Pluripotent Stem Cell-Specific Gene Modification.
Cultures of induced pluripotent stem cells (iPSCs) often contain cells of varying grades of pluripotency. We present novel lentiviral vectors targeted to the surface receptor CD30 (CD30-LV) to transfer genes into iPSCs that are truly pluripotent as demonstrated by marker gene expression. We demonstrate that CD30 expression is restricted to SSEA4high cells of human iPSC cultures and a human embryonic stem cell line. When CD30-LV was added to iPSCs during routine cultivation, efficient and exclusive transduction of cells positive for the pluripotency marker Oct-4 was achieved, while retaining their pluripotency. When added during the reprogramming process, CD30-LV solely transduced cells that became fully reprogrammed iPSCs as confirmed by co-expression of endogenous Nanog and the reporter gene. Thus, CD30-LV may serve as novel tool for the selective gene transfer into pluripotent stem cells with broad applications in basic and therapeutic research. View PublicationCatalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Crawford TQ and Roelink H (MAR 2007) Developmental dynamics : an official publication of the American Association of Anatomists 236 3 886--92The notch response inhibitor DAPT enhances neuronal differentiation in embryonic stem cell-derived embryoid bodies independently of sonic hedgehog signaling.
During development of the neural tube, inhibition of the Notch response as well as the activation of the Sonic Hedgehog (Shh) response results in the formation of neuronal cell types. To determine whether Shh and Notch act independently, we tested the effects of the Notch inhibitor DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester) on neuralized, embryonic stem (ES) cell-derived embryoid bodies (EBs), while varying the levels of Shh pathway activation. Shh-resistant EBs were derived from Smo null ES cells, while EBs with constitutive high level of Shh pathway activation were derived from Ptc1 null ES cells. Intermediate levels of Shh pathway activation was achieved by the addition of ShhN to the EB culture medium. It was found that DAPT-mediated inhibition of the Notch response resulted in enhanced neuronal differentiation. In the absence of Shh, more interneurons were detected, while the main effect of DAPT on EBs with an activated Shh response was the precocious loss of ventral neuronal precursor-specific markers.Mathew S et al. ( 2012) BMC systems biology 6 154Analysis of alternative signaling pathways of endoderm induction of human embryonic stem cells identifies context specific differences.
BACKGROUND: Lineage specific differentiation of human embryonic stem cells (hESCs) is largely mediated by specific growth factors and extracellular matrix molecules. Growth factors initiate a cascade of signals which control gene transcription and cell fate specification. There is a lot of interest in inducing hESCs to an endoderm fate which serves as a pathway towards more functional cell types like the pancreatic cells. Research over the past decade has established several robust pathways for deriving endoderm from hESCs, with the capability of further maturation. However, in our experience, the functional maturity of these endoderm derivatives, specifically to pancreatic lineage, largely depends on specific pathway of endoderm induction. Hence it will be of interest to understand the underlying mechanism mediating such induction and how it is translated to further maturation. In this work we analyze the regulatory interactions mediating different pathways of endoderm induction by identifying co-regulated transcription factors.backslashnbackslashnRESULTS: hESCs were induced towards endoderm using activin A and 4 different growth factors (FGF2 (F), BMP4 (B), PI3KI (P), and WNT3A (W)) and their combinations thereof, resulting in 15 total experimental conditions. At the end of differentiation each condition was analyzed by qRT-PCR for 12 relevant endoderm related transcription factors (TFs). As a first approach, we used hierarchical clustering to identify which growth factor combinations favor up-regulation of different genes. In the next step we identified sets of co-regulated transcription factors using a biclustering algorithm. The high variability of experimental data was addressed by integrating the biclustering formulation with bootstrap re-sampling to identify robust networks of co-regulated transcription factors. Our results show that the transition from early to late endoderm is favored by FGF2 as well as WNT3A treatments under high activin. However, induction of late endoderm markers is relatively favored by WNT3A under high activin.backslashnbackslashnCONCLUSIONS: Use of FGF2, WNT3A or PI3K inhibition with high activin A may serve well in definitive endoderm induction followed by WNT3A specific signaling to direct the definitive endoderm into late endodermal lineages. Other combinations, though still feasible for endoderm induction, appear less promising for pancreatic endoderm specification in our experiments.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Gong JH et al. (APR 1994) Leukemia 8 4 652--8Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells.
The cell line described here was established for a 50-year-old male patient with rapidly progressive non-Hodgkin's lymphoma whose marrow was diffusely infiltrated with large granular lymphocytes (LGL). Immunophenotyping of marrow blasts and peripheral lymphocytes was positive for CD56, CD2 and CD7, and negative for CD3. Cytotoxicity of peripheral blood mononuclear cells at an effector: target (E:T) cell ratio of 50:1 was 79% against K562 cells and 48% against Daudi cells. To establish the line, cells from the peripheral blood were placed into enriched alpha medium containing 12.5% fetal calf serum, 12.5% horse serum, 10(-4) M beta-mercaptoethanol and 10(-6) M hydrocortisone. Growth of the line (termed NK-92) is dependent on the presence of recombinant IL-2 and a dose as low as 10 U/ml is sufficient to maintain proliferation. Conversely, cells die within 72 h when deprived of IL-2; IL-7 and IL-12 do not maintain long-term growth, although IL-7 induces short-term proliferation measured by 3H-thymidine incorporation. None of the other cytokines tested (IL-1 alpha, IL-6, TNF-alpha, IFN-alpha, IFN-gamma) supported growth of NK-92 cells which have the following characteristics: surface marker positive for CD2, CD7, CD11a, CD28, CD45, CD54, CD56bright; surface marker negative for CD1, CD3, CD4, CD5, CD8, CD10, CD14, CD16, CD19, CD20, CD23, CD34, HLA-DR. DNA analysis showed germline configuration for T-cell receptor beta and gamma genes. CD25 (p55 IL-2 receptor) is expressed on about 50% of all cells when tested at 100 U/ml of IL-2 and its expression correlates inversely with the IL-2 concentration. The p75 IL-2 receptor is expressed on about half of the cells at low density irrespective of the IL-2 concentration. NK-92 cells kill both K562 and Daudi cells very effectively in a 4 h51-chromium release assay (84 and 86% respectively, at an E:T cell ratio of 5:1). The cell line described here thus displays characteristics of activated NK-cells and could be a valuable tool to study their biology.Catalog #: Product Name: 05100 MyeloCult™ H5100 Catalog #: 05100 Product Name: MyeloCult™ H5100 M. Holliday et al. ( 2018) Stem cell research 33 269--273Development of induced pluripotent stem cells from a patient with hypertrophic cardiomyopathy who carries the pathogenic myosin heavy chain 7 mutation p.Arg403Gln.
Hypertrophic cardiomyopathy (HCM) is an inherited cardiomyopathy characterized by left ventricular hypertrophy ≥15 mm in the absence of loading conditions. HCM has a prevalence of up to one in 200, and can result in significant adverse outcomes including heart failure and sudden cardiac death. An induced pluripotent stem cell (iPSC) line was generated from peripheral blood mononuclear cells obtained from the whole blood of a 38-year-old female patient with HCM in which genetic testing identified the well-known pathogenic p.Arg403Gln mutation in myosin heavy chain 7. iPSCs express pluripotency markers, demonstrate trilineage differentiation capacity, and display a normal 46,XX female karyotype. This resource will allow further assessment of the pathophysiological development of HCM.Catalog #: Product Name: 85850 ձ™1 05924 Erythroid Progenitor Reprogramming Kit 05010 STEMdiff™ Ventricular Cardiomyocyte Differentiation Kit Catalog #: 85850 Product Name: ձ™1 Catalog #: 05924 Product Name: Erythroid Progenitor Reprogramming Kit Catalog #: 05010 Product Name: STEMdiff™ Ventricular Cardiomyocyte Differentiation Kit Reddy K et al. (JUN 2008) Molecular cancer research : MCR 6 6 929--36Bone marrow subsets differentiate into endothelial cells and pericytes contributing to Ewing's tumor vessels.
Hematopoietic progenitor cells arising from bone marrow (BM) are known to contribute to the formation and expansion of tumor vasculature. However, whether different subsets of these cells have different roles in this process is unclear. To investigate the roles of BM-derived progenitor cell subpopulations in the formation of tumor vasculature in a Ewing's sarcoma model, we used a functional assay based on endothelial cell and pericyte differentiation in vivo. Fluorescence-activated cell sorting of human cord blood/BM or mouse BM from green fluorescent protein transgenic mice was used to isolate human CD34+/CD38(-), CD34+/CD45+, and CD34(-)/CD45+ cells and mouse Sca1+/Gr1+, Sca1(-)/Gr1+, VEGFR1+, and VEGFR2+ cells. Each of these progenitor subpopulations was separately injected intravenously into nude mice bearing Ewing's sarcoma tumors. Tumors were resected 1 week later and analyzed using immunohistochemistry and confocal microscopy for the presence of migrated progenitor cells expressing endothelial, pericyte, or inflammatory cell surface markers. We showed two distinct patterns of stem cell infiltration. Human CD34+/CD45+ and CD34+/CD38(-) and murine VEGFR2+ and Sca1+/Gr1+ cells migrated to Ewing's tumors, colocalized with the tumor vascular network, and differentiated into cells expressing either endothelial markers (mouse CD31 or human vascular endothelial cadherin) or the pericyte markers desmin and alpha-smooth muscle actin. By contrast, human CD34(-)/CD45+ and mouse Sca1(-)/Gr1+ cells migrated predominantly to sites outside of the tumor vasculature and differentiated into monocytes/macrophages expressing F4/80 or CD14. Our data indicate that only specific BM stem/progenitor subpopulations participate in Ewing's sarcoma tumor vasculogenesis.Catalog #: Product Name: 09600 StemSpan™ SFEM 02690 StemSpan™ CC100 Catalog #: 09600 Product Name: StemSpan™ SFEM Catalog #: 02690 Product Name: StemSpan™ CC100 Thomas AM et al. (MAR 2011) Journal of controlled release : official journal of the Controlled Release Society 150 2 212--9Development of a liposomal nanoparticle formulation of 5-fluorouracil for parenteral administration: formulation design, pharmacokinetics and efficacy.
5-Fluorouracil (5-FU) is a small, very membrane permeable drug that is poorly retained within the aqueous compartment of liposomal nanoparticles (LNP). To address this problem a novel method relying on formation of a ternary complex comprising copper, low molecular weight polyethylenimine (PEI) and 5-FU has been developed. More specifically, in the presence of entrapped copper and PEI, externally added 5-FU can be efficiently encapsulated (textgreater95%) in DSPC/Chol (1,2-Distearoyl-sn-Glycero-3-Phosphocholine/cholesterol; 55:45 mol%) liposomes (130-170 nm) to achieve drug-to-lipid ratios of 0.1 (mol:mol). Drug release studies completed using this LNP formulation of 5-FU demonstrated significant improvements in drug retention in vitro and in vivo. Plasma concentrations of 5-FU were 7- to 23-fold higher when the drug was administered intravenously to mice as the LNP 5-FU formulation compared to free 5-FU. Further, the therapeutic effects of the LNP 5-FU formulation, as determined in a HT-29 subcutaneous colorectal cancer model where treatment was given QDx5, was greater than that which could be achieved with free 5-FU when compared at equivalent doses. This is the first time an active loading method has been described for 5-FU. The use of ternary metal complexation strategy to encapsulate therapeutic agents may define a unique platform for preparation of LNP drug formulations.Catalog #: Product Name: 36350 McCoy's 5A Medium 07100 L-Glutamine Catalog #: 36350 Product Name: McCoy's 5A Medium Catalog #: 07100 Product Name: L-Glutamine Lepski G et al. (JAN 2013) Frontiers in cellular neuroscience 7 155cAMP promotes the differentiation of neural progenitor cells in vitro via modulation of voltage-gated calcium channels.
The molecular mechanisms underlying the differentiation of neural progenitor cells (NPCs) remain poorly understood. In this study we investigated the role of Ca(2+) and cAMP (cyclic adenosine monophosphate) in the differentiation of NPCs extracted from the subventricular zone of E14.5 rat embryos. Patch clamp recordings revealed that increasing cAMP-signaling with Forskolin or IBMX (3-isobutyl-1-methylxantine) significantly facilitated neuronal functional maturation. A continuous application of IBMX to the differentiation medium substantially increased the functional expression of voltage-gated Na(+) and K(+) channels, as well as neuronal firing frequency. Furthermore, we observed an increase in the frequency of spontaneous synaptic currents and in the amplitude of evoked glutamatergic and GABAergic synaptic currents. The most prominent acute effect of applying IBMX was an increase in L-type Ca(2+)currents. Conversely, blocking L-type channels strongly inhibited dendritic outgrowth and synapse formation even in the presence of IBMX, indicating that voltage-gated Ca(2+) influx plays a major role in neuronal differentiation. Finally, we found that nifedipine completely blocks IBMX-induced CREB phosphorylation (cAMP-response-element-binding protein), indicating that the activity of this important transcription factor equally depends on both enhanced cAMP and voltage-gated Ca(2+)-signaling. Taken together, these data indicate that the up-regulation of voltage-gated L-type Ca(2+)-channels and early electrical excitability are critical steps in the cAMP-dependent differentiation of SVZ-derived NPCs into functional neurons. To our knowledge, this is the first demonstration of the acute effects of cAMP on voltage-gated Ca(+2)channels in NPC-derived developing neurons.Abuljadayel IS (JAN 2003) Current medical research and opinion 19 5 355--75Induction of stem cell-like plasticity in mononuclear cells derived from unmobilised adult human peripheral blood.
Undifferentiated pluripotent stem cells with flexible developmental potentials are not normally found in peripheral blood. However, such cells have recently been reported to reside in the bone marrow. Herein are reported methods of inducing pluripotency in cells derived from unmobilised adult human peripheral blood. In response to the inclusion of purified CR3/43 monoclonal antibody (mAb) to well-established culture conditions, mononuclear cells (MNC) obtained from a single blood donor are converted into pluripotent haematopoietic, neuronal and cardiomyogenic progenitor stem cells or undifferentiated stem cells. The haematopoietic stem cells are CD34+, clonogenic and have been shown to repopulate non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. The neuronal precursors transcribe the primitive stem cell markers OCT-4 and nestin, and on maturation, differentially stain positive for neuronal, glial or oligodendrocyte-specific antigens. The cardiomyogenic progenitor stem cells form large bodies of asynchronously beating cells and differentiate into mature cardiomyocytes which transcribe GATA-4. The undifferentiated stem cells do not express haematopoietic-associated markers, are negative for major histocompatibility complex (MHC) class I and II antigens, transcribe high levels of OCT-4 and form embryoid body (EB)-like structures. This induction of stem cell-like plasticity in MNC may have proceeded by a process of retrodifferentiation but, in any case, could have profound clinical and pharmacological implications. Finally, the flexibility and the speed by which a variety of stem cell classes can be generated ex vivo from donor blood could potentially transfer this novel process into a less invasive automated clinical procedure.Catalog #: Product Name: 04434 MethoCult™ H4434 Classic Catalog #: 04434 Product Name: MethoCult™ H4434 Classic Al-Ali H et al. (MAY 2013) ACS chemical biology 25 5 1027--36A ROCK inhibitor permits survival of dissociated human embryonic stem cells.
Poor survival of human embryonic stem (hES) cells after cell dissociation is an obstacle to research, hindering manipulations such as subcloning. Here we show that application of a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, to hES cells markedly diminishes dissociation-induced apoptosis, increases cloning efficiency (from approximately 1% to approximately 27%) and facilitates subcloning after gene transfer. Furthermore, dissociated hES cells treated with Y-27632 are protected from apoptosis even in serum-free suspension (SFEB) culture and form floating aggregates. We demonstrate that the protective ability of Y-27632 enables SFEB-cultured hES cells to survive and differentiate into Bf1(+) cortical and basal telencephalic progenitors, as do SFEB-cultured mouse ES cells.Catalog #: Product Name: 72302 Y-27632 (Dihydrochloride) 73802 Rho Kinase Inhibitor IV Catalog #: 72302 Product Name: Y-27632 (Dihydrochloride) Catalog #: 73802 Product Name: Rho Kinase Inhibitor IV Tinoco R et al. (MAY 2016) Immunity 44 5 1190--203PSGL-1 Is an Immune Checkpoint Regulator that Promotes T Cell Exhaustion.
Chronic viruses and cancers thwart immune responses in humans by inducing T cell dysfunction. Using a murine chronic virus that models human infections, we investigated the function of the adhesion molecule, P-selectin glycoprotein ligand-1 (PSGL-1), that is upregulated on responding T cells. PSGL-1-deficient mice cleared the virus due to increased intrinsic survival of multifunctional effector T cells that had downregulated PD-1 as well as other inhibitory receptors. Notably, this response resulted in CD4(+)-T-cell-dependent immunopathology. Mechanistically, PSGL-1 ligation on exhausted CD8(+) T cells inhibited T cell receptor (TCR) and interleukin-2 (IL-2) signaling and upregulated PD-1, leading to diminished survival with TCR stimulation. In models of melanoma cancer in which T cell dysfunction occurs, PSGL-1 deficiency led to PD-1 downregulation, improved T cell responses, and tumor control. Thus, PSGL-1 plays a fundamental role in balancing viral control and immunopathology and also functions to regulate T cell responses in the tumor microenvironment.Catalog #: Product Name: 19853 EasySep™ Mouse CD8+ T Cell Isolation Kit Catalog #: 19853 Product Name: EasySep™ Mouse CD8+ T Cell Isolation Kit Items 97 to 108 of 6390 total
Shop ByFilter Results- Resource Type
-
- Reference 6390 items
- Product Type
-
- 24 items
- Area of Interest
-
- 11 items
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 6 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- 0 11 items
- ALDECOUNT 7 items
- ALDEFLUOR 216 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 1 item
- EasySep 751 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 7 items
- IntestiCult 142 items
- Lymphoprep 9 items
- MammoCult 45 items
- MegaCult 33 items
- MesenCult 133 items
- MethoCult 440 items
- MyeloCult 61 items
- MyoCult 2 items
- NeuroCult 350 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 77 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 20 items
- RosetteSep 252 items
- STEMdiff 47 items
- STEMvision 3 items
- SepMate 29 items
- StemSpan 219 items
- TeSR 1447 items
- mFreSR 3 items
- Cell and Tissue Source
-
- 24 items
- Cell Line
-
- 24 items
- Cell Type
-
- 12 items
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 by ϳԹ. All rights reserved.