References
Items 193 to 204 of 6390 total
- Yeo C et al. (SEP 2009) Regenerative Medicine 4 5 689--696
Ficoll-Paque™ versus ⳾DZ™: a comparative study of two density gradient media for therapeutic bone marrow mononuclear cell preparations
AIMS Contradictory outcomes from recent clinical trials investigating the transplantation of autologous bone marrow mononuclear cell (BM-MNC) fraction containing stem/progenitor cells to damaged myocardium, following acute myocardial infarction, may be, in part, due to the different cell isolation protocols used. We compared total BM-MNC numbers and its cellular subsets obtained following isolation using Ficoll-Paque and Lymphoprep - two different density gradient media used in the clinical trials. MATERIALS & METHODS Bone marrow samples were taken from patients entered into the REGENERATE-IHD clinical trial after 5 days of subcutaneous granulocyte colony-stimulating factor injections. Each sample was divided equally for BM-MNC isolation using Ficoll-Paque and Lymphoprep, keeping all other procedural steps constant. Isolated fractions were characterized for hematopoietic stem cells, endothelial progenitor cells, T lymphocytes, B lymphocytes and NK cells using cell surface markers CD34(+), CD133(+)VEGFR2(+), CD45(+)CD3(+), CD45(+)CD19(+) and CD45(+)CD16(+)CD56(+), respectively. There were no significant differences in the absolute numbers and percentage cell recovery of various mononuclear cell types recovered following separation using either density gradient media. Cell viability and the proportion of various cell phenotypes investigated were similar between the two media. They were also equally efficient in excluding unwanted red blood cells, granulocytes and platelets from the final cell products. CONCLUSION We demonstrated that the composition and quantity of cell types found within therapeutic BM-MNC preparations for use in clinical trials of cardiac stem cell transplantation are not influenced by the type of density gradient media used when comparing Ficoll-Paque and Lymphoprep.Catalog #: Product Name: 07801 ⳾DZ™ Catalog #: 07801 Product Name: ⳾DZ™ Pauls SD et al. (JUL 2016) Journal of immunology (Baltimore, Md. : 1950)FcγRIIB-Independent Mechanisms Controlling Membrane Localization of the Inhibitory Phosphatase SHIP in Human B Cells.
SHIP is an important regulator of immune cell signaling that functions to dephosphorylate the phosphoinositide phosphatidylinositol 3,4,5-trisphosphate at the plasma membrane and mediate protein-protein interactions. One established paradigm for SHIP activation involves its recruitment to the phospho-ITIM motif of the inhibitory receptor FcγRIIB. Although SHIP is essential for the inhibitory function of FcγRIIB, it also has critical modulating functions in signaling initiated from activating immunoreceptors such as B cell Ag receptor. In this study, we found that SHIP is indistinguishably recruited to the plasma membrane after BCR stimulation with or without FcγRIIB coligation in human cell lines and primary cells. Interestingly, fluorescence recovery after photobleaching analysis reveals differential mobility of SHIP-enhanced GFP depending on the mode of stimulation, suggesting that although BCR and FcγRIIB can both recruit SHIP, this occurs via distinct molecular complexes. Mutagenesis of a SHIP-enhanced GFP fusion protein reveals that the SHIP-Src homology 2 domain is essential in both cases whereas the C terminus is required for recruitment via BCR stimulation, but is less important with FcγRIIB coligation. Experiments with pharmacological inhibitors reveal that Syk activity is required for optimal stimulation-induced membrane localization of SHIP, whereas neither PI3K or Src kinase activity is essential. BCR-induced association of SHIP with binding partner Shc1 is dependent on Syk, as is tyrosine phosphorylation of both partners. Our results indicate that FcγRIIB is not uniquely able to promote membrane recruitment of SHIP, but rather modulates its function via formation of distinct signaling complexes. Membrane recruitment of SHIP via Syk-dependent mechanisms may be an important factor modulating immunoreceptor signaling.Catalog #: Product Name: 19764 EasySep™ Mouse Plasmacytoid DC Isolation Kit 19674 EasySep™ Direct Human B Cell Isolation Kit 17864 EasySep™ Human Memory B Cell Isolation Kit Catalog #: 19764 Product Name: EasySep™ Mouse Plasmacytoid DC Isolation Kit Catalog #: 19674 Product Name: EasySep™ Direct Human B Cell Isolation Kit Catalog #: 17864 Product Name: EasySep™ Human Memory B Cell Isolation Kit Chang E-A et al. ( 2010) The International journal of developmental biology 54 4 707--715Increased cellular turnover in response to fluoxetine in neuronal precursors derived from human embryonic stem cells.
Previous reports have shown that antidepressants increase neuronal cell proliferation and enhance neuroplasticity both in vivo and in vitro. This study investigated the direct effects of one such antidepressant, fluoxetine , on cell proliferation and on the production of neurotrophic factors in neuronal precursors derived from human embryonic stem cells (hESCs; H9). Fluoxetine induced the differentiation of neuronal precursors, strongly enhancing neuronal characteristics. The rate of proliferation was higher in fluoxetine -treated cells than in control cells, as determined by MTT [3(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide] assay. The CPDL (cumulative population doubling level) of the fluoxetine-treated cells was significantly increased in comparison to that of control cells (ptextless.001). Bromodeoxyuridine incorporation and staurosporine-induced apoptosis assays were elevated in fluoxetine-treated cells. Quantitative RT-PCR analysis revealed no significant differences in the expression of neurotrophic factors, brain-derived neurotrophic factor (BDNF);glial-derived neurotrophic factor (GDNF) and cAMP-responsive element-binding protein (CREB) between cells treated with fluoxetine for two weeks and their untreated counterparts. These results may help elucidate the mechanism of action of fluoxetine as a therapeutic drug for the treatment of depression. Data presented herein provide more evidence that, in addition to having a direct chemical effect on serotonin levels, fluoxetine can influence hESC-derived neuronal cells by increasing cell proliferation, while allowing them to maintain their neuronal characteristics.Osakada F et al. (JAN 2009) Nature protocols 4 6 811--24Stepwise differentiation of pluripotent stem cells into retinal cells.
Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass of blastocyst-stage embryos. They can maintain an undifferentiated state indefinitely and can differentiate into derivatives of all three germ layers, namely ectoderm, endoderm and mesoderm. Although much progress has been made in the propagation and differentiation of ES cells, induction of photoreceptors has generally required coculture with or transplantation into developing retinal tissue. Here, we describe a protocol for generating retinal cells from ES cells by stepwise treatment with defined factors. This method preferentially induces photoreceptor and retinal pigment epithelium (RPE) cells from mouse and human ES cells. In our protocol, differentiation of RPE and photoreceptors from mouse ES cells requires 28 d and the differentiation of human ES cells into mature RPE and photoreceptors requires 120 and 150 d, respectively. This differentiation system and the resulting pluripotent stem cell-derived retinal cells will facilitate the development of transplantation therapies for retinal diseases, drug testing and in vitro disease modeling. It will also improve our understanding of the development of the central nervous system, especially the eye.Asuri P et al. (FEB 2012) Molecular therapy : the journal of the American Society of Gene Therapy 20 2 329--38Directed Evolution of Adeno-associated Virus for Enhanced Gene Delivery and Gene Targeting in Human Pluripotent Stem Cells
Efficient approaches for the precise genetic engineering of human pluripotent stem cells (hPSCs) can enhance both basic and applied stem cell research. Adeno- associated virus (AAV) vectors are of particular interest for their capacity to mediate efficient gene delivery to and gene targeting in various cells. However, natural AAV serotypes offer only modest transduction of human embryonic and induced pluripotent stem cells (hESCs and hiPSCs), which limits their utility for efficiently manipulating the hPSC genome. Directed evolution is a powerful means to generate viral vectors with novel capabilities, and we have applied this approach to create a novel AAV variant with high gene delivery efficiencies (˜50%) to hPSCs, which are importantly accompanied by a considerable increase in gene-targeting frequencies, up to 0.12%. While this level is likely sufficient for numerous applications, we also show that the gene-targeting efficiency mediated by an evolved AAV variant can be further enhanced (textgreater1%) in the presence of targeted double- stranded breaks (DSBs) generated by the co-delivery of artificial zinc finger nucleases (ZFNs). Thus, this study demonstrates that under appropriate selective pressures, AAV vectors can be created to mediate efficient gene targeting in hPSCs, alone or in the presence of ZFN- mediated double-stranded DNA breaks.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Usta S et al. (OCT 2014) Annals of translational medicine 2 10 97Chemically defined serum-free and xeno-free media for multiple cell lineages.
Cell culture is one of the most common methods used to recapitulate a human disease environment in a laboratory setting. Cell culture techniques are used to grow and maintain cells of various types including those derived from primary tissues, such as stem cells and cancer tumors. However, a major confounding factor with cell culture is the use of serum and animal (xeno) products in the media. The addition of animal products introduces batch and lot variations that lead to experimental variability, confounds studies with therapeutic outcomes for cultured cells, and represents a major cost associated with cell culture. Here we report a commercially available serum-free, albumin-free, and xeno free (XF) media (Neuro-Pure(TM)) that is more cost-effective than other commercial medias. Neuro-Pure was used to maintain and differentiate various cells of neuronal lineages, fibroblasts, as well as specific cancer cell lines; without the use of contaminants such serum, albumin, and animal products. Neuro-Pure allows for a controlled and reproducible cell culture environment that is applicable to translational medicine and general tissue culture.Catalog #: Product Name: 05761 NeuroCult™-XF Proliferation Medium Catalog #: 05761 Product Name: NeuroCult™-XF Proliferation Medium Wang X et al. (DEC 2009) Journal of Biological Chemistry 284 49 34054--34064Inhibition of caspase-mediated anoikis is critical for basic fibroblast growth factor-sustained culture of human pluripotent stem cells
Apoptosis and proliferation are two dynamically and tightly regulated processes that together maintain the homeostasis of renewable tissues. Anoikis is a subtype of apoptosis induced by detachment of adherent cells from the extracellular matrix. By using the defined mTeSR1 medium and collecting freshly detached cells, we found here that human pluripotent stem (PS) cells including embryonic stem (ES) cells and induced pluripotent stem cells are subject to constant anoikis in culture, which is escalated in the absence of basic fibroblast growth factor (bFGF). Withdrawal of bFGF also promotes apoptosis and differentiation of the remaining adherent cells without affecting their cell cycle progression. Insulin-like growth factor 2 (IGF2) has previously been reported to act downstream of FGF signaling to support self-renewal of human ES cells. However, we found that IGF2 cannot substitute bFGF in the TeSR1-supported culture, although endogenous IGF signaling is required to sustain self-renewal of human ES cells. On the other hand, all of the bFGF withdrawal effects observed here can be markedly prevented by the caspase inhibitor z-VAD-FMK. We further demonstrated that the bFGF-repressed anoikis is dependent on activation of ERK and AKT and associated with inhibition of Bcl-2-interacting mediator of cell death and the caspase-ROCK1-myosin signaling. Anoikis is independent of pre-detachment apoptosis and differentiation of the cells. Because previous studies of human PS cells have been focused on attached cells, our findings revealed a neglected role of bFGF in sustaining self-renewal of human PS cells: preventing them from anoikis via inhibition of caspase activation.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Kruh J (FEB 1982) Molecular and cellular biochemistry 42 2 65--82Effects of sodium butyrate, a new pharmacological agent, on cells in culture.
Sodium butyrate, at millimolar concentrations, when added to cell cultures produces many morphological and biochemical modifications in a reversible manner. Some of them occur in all cell lines. They concern regulatory mechanisms of gene expression and cell growth: an hyperacetylation of histone resulting from an inhibition of histone deacetylase and an arrest of cell proliferation are almost constantly observed. Some other modifications vary from one cell type to another: induction of proteins, including enzymes, hormones, hemoglobin, inhibition of cell differentiation, reversion of transformed characteristics of cells to normal morphological and biochemical pattern, increase in interferon antiviral efficiency and induction of integrated viruses. Most if not all these effects of butyrate could result from histone hyperacetylation, from changes in chromatin structures as measured by accessibility to DNases and from modifications in cytoskeleton assembly. We do not know at the present time whether butyrate acts on a very specific target site in cell or if it acts on several cell components.Catalog #: Product Name: 72242 Sodium Butyrate Catalog #: 72242 Product Name: Sodium Butyrate Sondergaard CS et al. (JAN 2010) Journal of translational medicine 8 24Human cord blood progenitors with high aldehyde dehydrogenase activity improve vascular density in a model of acute myocardial infarction.
UNLABELLED: Human stem cells from adult sources have been shown to contribute to the regeneration of muscle, liver, heart, and vasculature. The mechanisms by which this is accomplished are, however, still not well understood. We tested the engraftment and regenerative potential of human umbilical cord blood-derived ALDH(hi)Lin(-), and ALDH(lo)Lin(-) cells following transplantation to NOD/SCID or NOD/SCID beta2m null mice with experimentally induced acute myocardial infarction. We used combined nanoparticle labeling and whole organ fluorescent imaging to detect human cells in multiple organs 48 hours post transplantation. Engraftment and regenerative effects of cell treatment were assessed four weeks post transplantation. We found that ALDH(hi)Lin(-) stem cells specifically located to the site of injury 48 hours post transplantation and engrafted the infarcted heart at higher frequencies than ALDH(lo)Lin(-) committed progenitor cells four weeks post transplantation. We found no donor derived cardiomyocytes and few endothelial cells of donor origin. Cell treatment was not associated with any detectable functional improvement at the four week endpoint. There was, however, a significant increase in vascular density in the central infarct zone of ALDH(hi)Lin(-) cell-treated mice, as compared to PBS and ALDH(lo)Lin(-) cell-treated mice. CONCLUSIONS: Our data indicate that adult human stem cells do not become a significant part of the regenerating tissue, but rapidly home to and persist only temporarily at the site of hypoxic injury to exert trophic effects on tissue repair thereby enhancing vascular recovery.Catalog #: Product Name: 01701 ALDEFLUOR™ Assay Buffer 01700 ALDEFLUOR™ Kit 01705 ALDEFLUOR™ DEAB Reagent Catalog #: 01701 Product Name: ALDEFLUOR™ Assay Buffer Catalog #: 01700 Product Name: ALDEFLUOR™ Kit Catalog #: 01705 Product Name: ALDEFLUOR™ DEAB Reagent Kim YH et al. ( 2010) Stem cells (Dayton, Ohio) 28 10 1816--1828Differential regulation of proliferation and differentiation in neural precursor cells by the Jak pathway.
Neuronal precursor cells (NPCs) are temporally regulated and have the ability to proliferate and differentiate into mature neurons, oligodendrocytes, and astrocytes in the presence of growth factors (GFs). In the present study, the role of the Jak pathway in brain development was investigated in NPCs derived from neurosphere cultures using Jak2 and Jak3 small interfering RNAs and specific inhibitors. Jak2 inhibition profoundly decreased NPC proliferation, preventing further differentiation into neurons and glial cells. However, Jak3 inhibition induced neuronal differentiation accompanied by neurite growth. This phenomenon was due to the Jak3 inhibition-mediated induction of neurogenin (Ngn)2 and NeuroD in NPCs. Jak3 inhibition induced NPCs to differentiate into scattered neurons and increased the expression of Tuj1, microtubule associated protein 2 (MAP2), Olig2, and neuroglial protein (NG)2, but decreased glial fibrillary acidic protein (GFAP) expression, with predominant neurogenesis/polydendrogenesis compared with astrogliogenesis. Therefore, Jak2 may be important for NPC proliferation and maintenance, whereas knocking-down of Jak3 signaling is essential for NPC differentiation into neurons and oligodendrocytes but does not lead to astrocyte differentiation. These results suggest that NPC proliferation and differentiation are differentially regulated by the Jak pathway.Catalog #: Product Name: 73552 WHI-P154 Catalog #: 73552 Product Name: WHI-P154 Bogliotti YS et al. (JAN 2016) Reproduction, fertility, and development 29 1 108--1092 BOVINE EMBRYONIC STEM-LIKE CELLS DERIVED FROM IN VITRO-PRODUCED BLASTOCYSTS.
Embryonic stem cells (ESC) are derived from the inner cell mass (ICM) of preimplantation blastocysts. To date, it has been challenging to establish pluripotent ESC lines for domestic animals, which could be important for biotechnological applications, such as genetic engineering and SCNT, and biomedical research. The aim of this work was to derive and characterise bovine embryonic stem-like cells (bESC) from in vitro-produced bovine blastocysts. Embryos were produced by in vitro fertilization of in vitro-matured oocytes aspirated from abattoir ovaries and cultured in groups of 25 in 50-μL drops of KSOM (Evolve, Zenith Biotech) with 4mgmL(-1) BSA for 7 days until they reached the blastocyst stage (Ross et al., 2009 Reproduction 137, 427-437). At that point, the zona pellucida (ZP) was removed using 1mgmL(-1) Pronase (Sigma, St. Louis, MO), and ZP-free blastocysts were washed 6 times in SOF-HEPES. Three derivation approaches were tested: ZP-free whole blastocysts, mechanically isolated ICM, and immunosurgery-derived ICM. In each case, individual blastocysts/ICM were placed in 1 well of a 12-well dish seeded with a monolayer of mouse embryo fibroblasts (MEF) and cultured in mTeSR1 basal medium (without growth factors) supplemented with 20ngmL(-1) FGF2 and 2.5μM IWR1 (CTFR) (Wu et al. 2015 Nature 521, 316-321). After 48h, blastocysts/ICM that failed to adhere were physically pressed against the bottom of the culture dish with a 22-gauge needle under a stereoscope to aid attachment. Thereafter, the media was changed daily. Outgrowths (after 6-7 days in culture) were dissociated and passaged using TrypLE and re-seeded in the presence of ROCK inhibitor (Y-27632, 10μM) onto newly prepared wells containing MEF. Established bESC lines were cultured on MEF and passaged every 4 to 5 days at a 1:10 split ratio. The bESC lines were characterised by immunofluorescence (IF), RNA-seq, and teratoma formation. The efficiency of cell line derivation (evaluated at passage 3) was similar for the 3 approaches: whole blastocysts (9/16, 56.3%), mechanical ICM isolation (7/12, 58.3%), and immunosurgical ICM isolation (7/16, 43.8%). The bESC were passaged and cultured long-term (more than 15 passages) and were subjected to several rounds of freezing and thawing while retaining their morphology and characteristics. IF analysis showed that long-term cultured bESC expressed the markers SOX2 and OCT4 (pluripotency), but did not express CDX2 (trophectoderm) or GATA6 (primitive endoderm). RNAseq analysis of 2 bESC lines showed that ICM markers (POU5F1, NANOG, SOX2, LIN28B, DNAMT3B, UTF1, SALL4) were expressed (RPKMtextgreater0.4), while trophectoderm markers (CDX2, GATA2, GATA3, FGF4, TFAP2A) and primitive endoderm markers (GATA6, HNF4A) were not expressed (RPKMtextless0.4). Finally, bESC lines (n=2) were able to form teratomas in immunodeficient mice. The teratomas contained tissues representative of the 3 germ lineages and expressed lineage-specific markers (ectoderm: TUJ1, endoderm: FOXA2, and mesoderm: ASM). In conclusion, the culture condition used in this work (CTFR) enables robust derivation and long-term in vitro propagation of pluripotent bESC.Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Laping NJ et al. (JUL 2002) Molecular pharmacology 62 1 58--64Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542.
Transforming growth factor beta1 (TGF-beta1) is a potent fibrotic factor responsible for the synthesis of extracellular matrix. TGF-beta1 acts through the TGF-beta type I and type II receptors to activate intracellular mediators, such as Smad proteins, the p38 mitogen-activated protein kinase (MAPK), and the extracellular signal-regulated kinase pathway. We expressed the kinase domain of the TGF-beta type I receptor [activin receptor-like kinase (ALK)5] and the substrate, Smad3, and determined that SB-431542 is a selective inhibitor of Smad3 phosphorylation with an IC50 of 94 nM. It inhibited TGF-beta1-induced nuclear Smad3 localization. The p38 mitogen-activated protein kinase inhibitors SB-203580 and SB-202190 also inhibit phosphorylation of Smad3 by ALK5 with IC50 values of 6 and 3 microM, respectively. This suggests that these p38 MAPK inhibitors must be used at concentrations of less than 10 microM to selectively address p38 MAPK mechanisms. However, the p38 MAPK inhibitor SB-242235 did not inhibit ALK5. To evaluate the relative contribution of Smad signaling and p38 MAPK signaling in TGF-beta1-induced matrix production, the effect of SB-431542 was compared with that of SB-242235 in renal epithelial carcinoma A498 cells. All compounds inhibited TGF-beta1-induced fibronectin (FN) mRNA, indicating that FN synthesis is mediated in part via the p38 MAPK pathway. In contrast, SB-431542, but not the selective p38 MAPK inhibitor SB-242235, inhibited TGF-beta1-induced collagen Ialpha1 (col Ialpha1). These data indicate that some matrix markers that are stimulated by TGF-beta1 are mediated via the p38 MAPK pathway (i.e., FN), whereas others seem to be activated via ALK5 signaling independent of the p38 MAPK pathway (i.e., col Ialpha1).Catalog #: Product Name: 72232 SB431542 (Hydrate) Catalog #: 72232 Product Name: SB431542 (Hydrate) Items 193 to 204 of 6390 total
Shop ByFilter Results- Resource Type
-
- Reference 6390 items
- Area of Interest
-
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 6 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- ALDECOUNT 7 items
- ALDEFLUOR 223 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 2 items
- EasySep 760 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 12 items
- IntestiCult 142 items
- Lymphoprep 25 items
- MammoCult 50 items
- MegaCult 35 items
- MesenCult 133 items
- MethoCult 481 items
- MyeloCult 75 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 58 items
- RosetteSep 272 items
- STEMdiff 63 items
- STEMvision 9 items
- SepMate 42 items
- StemSpan 290 items
- TeSR 1581 items
- mFreSR 14 items
- Cell Type
-
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 by ϳԹ. All rights reserved.