References
Items 217 to 228 of 6390 total
- Denning-Kendall P et al. (JAN 2003) Stem cells (Dayton, Ohio) 21 6 694--701
Cobblestone area-forming cells in human cord blood are heterogeneous and differ from long-term culture-initiating cells.
The long-term culture-initiating cell (LTC-IC) assay is a physiological approach to the quantitation of primitive human hematopoietic cells. The readout using identification of cobblestone area-forming cells (CAFC) has gained popularity over the LTC-IC readout where cells are subcultured in a colony-forming cell assay. However, comparing the two assays, cord blood (CB) mononuclear cell (MNC) samples were found to contain a higher frequency of CAFC than LTC-IC (126 +/- 83 versus 40 +/- 31 per 10(5) cells, p = 0.0001). Overall, 60% of week-5 cobblestones produced by CB MNC were not functional LTC-IC and were classified as false." Separation of CB MNC using immunomagnetic columns showed that false cobblestones were CD34(-)/lineage(+). Purified CD34(+) cells�Catalog #: Product Name: 09600 StemSpan™ SFEM 09500 BIT 9500 Serum Substitute Catalog #: 09600 Product Name: StemSpan™ SFEM Catalog #: 09500 Product Name: BIT 9500 Serum Substitute Prosper F et al. (JUN 1997) Blood 89 11 3991--7Primitive long-term culture initiating cells (LTC-ICs) in granulocyte colony-stimulating factor mobilized peripheral blood progenitor cells have similar potential for ex vivo expansion as primitive LTC-ICs in steady state bone marrow.
We have recently shown that more than 90% of long-term culture initiating cells (LTC-IC) mobilized in the peripheral blood (PB) of normal individuals express HLA-DR and CD38 antigens and can sustain hematopoiesis for only 5 weeks. However, 10% of LTC-IC in mobilized PB are CD34+ HLA-DR- and CD34+ CD38- and can sustain hematopoiesis for at least 8 weeks. We now examine the ex vivo expansion potential of CD34+ HLA-DR+ cells (rich in mature LTC-IC) and CD34+ HLA-DR- cells (rich in primitive LTC-IC) in granulocyte colony-stimulating factor (G-CSF) mobilized PB progenitor cells (PBPC). Cells were cultured in contact with M2-10B4 cells (contact) or in transwells above M2-10B4 (noncontact) without and with interleukin-3 (IL-3) and macrophage inflammatory protein (MIP-1alpha) for 2 and 5 weeks. Progeny were evaluated for the presence of colony-forming cells (CFC) and LTC-IC. When CD34+ HLA-DR+ PB cells were cultured in contact cultures without cytokines, a threefold expansion of CFC was seen at 2 weeks, but an 80% decrease in CFC was seen at week 5. Further, the recovery of LTC-IC at week 2 was only 17% and 1% at week 5. This confirms our previous observation that although CD34+ HLA-DR+ mobilized PB cells can initiate long-term cultures, they are relatively mature and cannot sustain long-term hematopoiesis. In contrast, when CD34+ HLA-DR- mobilized PB cells were cultured in contact cultures without cytokines, CFC expansion persisted until week 5 and 49% and 11% of LTC-IC were recovered at week 2 and 5, respectively. As we have shown for steady state bone marrow (BM) progenitors, recovery of LTC-IC was threefold higher when CD34+ HLA-DR- PBPC were cultured in noncontact rather than contact cultures, and improved further when IL-3 and MIP-1alpha were added to noncontact cultures (96 +/- 2% maintained at week 5). We conclude that although G-CSF mobilizes a large population of mature" CD34+ HLA-DR+ LTC-IC with a limited proliferative capacity�Catalog #: Product Name: 05100 MyeloCult™ H5100 Catalog #: 05100 Product Name: MyeloCult™ H5100 Ohgushi M et al. (AUG 2010) Cell stem cell 7 2 225--39Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells.
Human embryonic stem cells (hESCs), unlike mouse ones (mESCs), are vulnerable to apoptosis upon dissociation. Here, we show that the apoptosis, which is of a nonanoikis type, is caused by ROCK-dependent hyperactivation of actomyosin and efficiently suppressed by the myosin inhibitor Blebbistatin. The actomyosin hyperactivation is triggered by the loss of E-cadherin-dependent intercellular contact and also observed in dissociated mouse epiblast-derived pluripotent cells but not in mESCs. We reveal that Abr, a unique Rho-GEF family factor containing a functional Rac-GAP domain, is an indispensable upstream regulator of the apoptosis and ROCK/myosin hyperactivation. Rho activation coupled with Rac inhibition is induced in hESCs upon dissociation, but not in Abr-depleted hESCs or mESCs. Furthermore, artificial Rho or ROCK activation with Rac inhibition restores the vulnerability of Abr-depleted hESCs to dissociation-induced apoptosis. Thus, the Abr-dependent Rho-high/Rac-low" state plays a decisive role in initiating the dissociation-induced actomyosin hyperactivation and apoptosis in hESCs."Catalog #: Product Name: 72402 (-)-Blebbistatin Catalog #: 72402 Product Name: (-)-Blebbistatin Zhang R et al. (JAN 2013) Nature communications 4 1335A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells
Cultures of human embryonic stem cell typically rely on protein matrices or feeder cells to support attachment and growth, while mechanical, enzymatic or chemical cell dissociation methods are used for cellular passaging. However, these methods are ill defined, thus introducing variability into the system, and may damage cells. They also exert selective pressures favouring cell aneuploidy and loss of differentiation potential. Here we report the identification of a family of chemically defined thermoresponsive synthetic hydrogels based on 2-(diethylamino)ethyl acrylate, which support long-term human embryonic stem cell growth and pluripotency over a period of 2-6 months. The hydrogels permitted gentle, reagent-free cell passaging by virtue of transient modulation of the ambient temperature from 37 to 15 °C for 30 min. These chemically defined alternatives to currently used, undefined biological substrates represent a flexible and scalable approach for improving the definition, efficacy and safety of human embryonic stem cell culture systems for research, industrial and clinical applications. View PublicationCatalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 Hartung O et al. (AUG 2010) Current protocols in stem cell biology Chapter 1 Unit 1C.10Clump passaging and expansion of human embryonic and induced pluripotent stem cells on mouse embryonic fibroblast feeder cells.
The ability of human embryonic stem cells (hESCs) to differentiate into essentially all somatic cell types has made them a valuable tool for studying human development and has positioned them for broad applications in toxicology, regenerative medicine, and drug discovery. This unit describes a protocol for the large-scale expansion and maintenance of hESCs in vitro. hESC cultures must maintain a balance between the cellular states of pluripotency and differentiation; thus, researchers must use care when growing these technically demanding cells. The culture system is based largely on the use of a proprietary serum-replacement product and basic fibroblast growth factor (bFGF), with mouse embryonic fibroblasts as a feeder layer. These conditions provide the basis for relatively inexpensive maintenance and expansion of hESCs, as well as their engineered counterparts, human induced pluripotent stem cells (hiPSCs).Catalog #: Product Name: 85850 ձ™1 Catalog #: 85850 Product Name: ձ™1 L. Chicaybam et al. ( 2016) Frontiers in bioengineering and biotechnology 4 99An Efficient Electroporation Protocol for the Genetic Modification of Mammalian Cells.
Genetic modification of cell lines and primary cells is an expensive and cumbersome approach, often involving the use of viral vectors. Electroporation using square-wave generating devices, like Lonza's Nucleofector, is a widely used option, but the costs associated with the acquisition of electroporation kits and the transient transgene expression might hamper the utility of this methodology. In the present work, we show that our in-house developed buffers, termed Chicabuffers, can be efficiently used to electroporate cell lines and primary cells from murine and human origin. Using the Nucleofector II device, we electroporated 14 different cell lines and also primary cells, like mesenchymal stem cells and cord blood CD34+, providing optimized protocols for each of them. Moreover, when combined with sleeping beauty-based transposon system, long-term transgene expression could be achieved in all types of cells tested. Transgene expression was stable and did not interfere with CD34+ differentiation to committed progenitors. We also show that these buffers can be used in CRISPR-mediated editing of PDCD1 gene locus in 293T and human peripheral blood mononuclear cells. The optimized protocols reported in this study provide a suitable and cost-effective platform for the genetic modification of cells, facilitating the widespread adoption of this technology.Catalog #: Product Name: 04034 MethoCult™ H4034 Optimum 22000 շѱDz™ Catalog #: 04034 Product Name: MethoCult™ H4034 Optimum Catalog #: 22000 Product Name: շѱDz™ M. K. Wetzel-Smith et al. (DEC 2014) Nature medicine 20 12 1452--7A rare mutation in UNC5C predisposes to late-onset Alzheimer's disease and increases neuronal cell death.
We have identified a rare coding mutation, T835M (rs137875858), in the UNC5C netrin receptor gene that segregated with disease in an autosomal dominant pattern in two families enriched for late-onset Alzheimer's disease and that was associated with disease across four large case-control cohorts (odds ratio = 2.15, Pmeta = 0.0095). T835M alters a conserved residue in the hinge region of UNC5C, and in vitro studies demonstrate that this mutation leads to increased cell death in human HEK293T cells and in rodent neurons. Furthermore, neurons expressing T835M UNC5C are more susceptible to cell death from multiple neurotoxic stimuli, including $\beta$-amyloid (A$\beta$), glutamate and staurosporine. On the basis of these data and the enriched hippocampal expression of UNC5C in the adult nervous system, we propose that one possible mechanism in which T835M UNC5C contributes to the risk of Alzheimer's disease is by increasing susceptibility to neuronal cell death, particularly in vulnerable regions of the Alzheimer's disease brain.Catalog #: Product Name: 07801 ⳾DZ™ 85450 SepMate™-50 (IVD) 86450 SepMate™-50 (RUO) Catalog #: 07801 Product Name: ⳾DZ™ Catalog #: 85450 Product Name: SepMate™-50 (IVD) Catalog #: 86450 Product Name: SepMate™-50 (RUO) T. P. Silva et al. ( 2020) Frontiers in bioengineering and biotechnology 8 70Maturation of Human Pluripotent Stem Cell-Derived Cerebellar Neurons in the Absence of Co-culture.
The cerebellum plays a critical role in all vertebrates, and many neurological disorders are associated with cerebellum dysfunction. A major limitation in cerebellar research has been the lack of adequate disease models. As an alternative to animal models, cerebellar neurons differentiated from pluripotent stem cells have been used. However, previous studies only produced limited amounts of Purkinje cells. Moreover, in vitro generation of Purkinje cells required co-culture systems, which may introduce unknown components to the system. Here we describe a novel differentiation strategy that uses defined medium to generate Purkinje cells, granule cells, interneurons, and deep cerebellar nuclei projection neurons, that self-formed and differentiated into electrically active cells. Using a defined basal medium optimized for neuronal cell culture, we successfully promoted the differentiation of cerebellar precursors without the need for co-culturing. We anticipate that our findings may help developing better models for the study of cerebellar dysfunctions, while providing an advance toward the development of autologous replacement strategies for treating cerebellar degenerative diseases.Catalog #: Product Name: 85850 ձ™1 34811 ±™800 05711 NeuroCult™ SM1 Neuronal Supplement 07152 N2 Supplement-A 05790 BrainPhys™ Neuronal Medium 05792 BrainPhys™ Neuronal Medium and SM1 Kit 05794 BrainPhys™ Primary Neuron Kit 05795 BrainPhys™ hPSC Neuron Kit 05793 BrainPhys™ Neuronal Medium N2-A & SM1 Kit Catalog #: 85850 Product Name: ձ™1 Catalog #: 34811 Product Name: ±™800 Catalog #: 05711 Product Name: NeuroCult™ SM1 Neuronal Supplement Catalog #: 07152 Product Name: N2 Supplement-A Catalog #: 05790 Product Name: BrainPhys™ Neuronal Medium Catalog #: 05792 Product Name: BrainPhys™ Neuronal Medium and SM1 Kit Catalog #: 05794 Product Name: BrainPhys™ Primary Neuron Kit Catalog #: 05795 Product Name: BrainPhys™ hPSC Neuron Kit Catalog #: 05793 Product Name: BrainPhys™ Neuronal Medium N2-A & SM1 Kit Sand KL et al. (APR 2009) Cellular and molecular life sciences : CMLS 66 8 1446--56Modulation of natural killer cell cytotoxicity and cytokine release by the drug glatiramer acetate.
Glatiramer acetate (GA or Copaxone) is a drug used to treat experimental autoimmune encephalomyelitis in mice and multiple sclerosis in human. Here, we describe a new mechanism of action for this drug. GA enhanced the cytolysis of human NK cells against autologous and allogeneic immature and mature monocyte-derived dendritic cells (DCs). This drug reduced the percentages of mature DCs expressing CD80, CD83, HLA-DR or HLA-I. In contrast, it did not modulate the percentages of NK cells expressing NKG2D, NKp30, or NKp44. Nonetheless, anti-NKp30 or anti-CD86 inhibited GA-enhanced human NK cell lysis of immature DCs. Hence, CD86, and NKp30 are important for NK cell lysis of immature DCs, whereas CD80, CD83, HLA-DR and HLA-I are important for the lysis of mature DCs when GA is used as a stimulus. Further, GA inhibited the release of IFN-gamma 24 h but increased the release of TNF-alpha 48 h after incubation with NK cells.Catalog #: Product Name: 19055 EasySep™ Human NK Cell Enrichment Kit Catalog #: 19055 Product Name: EasySep™ Human NK Cell Enrichment Kit Guan Y et al. (APR 2003) Blood 101 8 3142--9Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML).
Although many acute myeloid leukemia (AML) colony-forming cells (CFCs) and long-term culture-initiating cells (LTC-ICs) directly isolated from patients are actively cycling, quiescent progenitors are present in most samples. In the current study, (3)H-thymidine ((3)H-Tdr) suicide assays demonstrated that most NOD/SCID mouse leukemia-initiating cells (NOD/SL-ICs) are quiescent in 6 of 7 AML samples. AML cells in G(0), G(1), and S/G(2)+M were isolated from 4 of these samples using Hoechst 33342/pyroninY staining and cell sorting. The progenitor content of each subpopulation was consistent with the (3)H-Tdr suicide results, with NOD/SL-ICs found almost exclusively among G(0) cells while the cycling status of AML CFCs and LTC-ICs was more heterogeneous. Interestingly, after 72 hours in serum-free culture with or without Steel factor (SF), Flt-3 ligand (FL), and interleukin-3 (IL-3), most G(0) AML cells entered active cell cycle (percentage of AML cells remaining in G(0) at 72 hours, 1.2% to 37%, and 0% to 7.6% in cultures without and with growth factors [GFs], respectively) while G(0) cells from normal lineage-depleted bone marrow remained quiescent in the absence of GF. All 4 AML samples showed evidence of autocrine production of 2 or more of SF, FL, IL-3, and granulocyte-macrophage colony-stimulating factor (GM-CSF). In addition, 3 of 4 samples contained an internal tandem duplication of the FLT3 gene. In summary, quiescent leukemic cells, including NOD/SL-ICs, are present in most AML patients. Their spontaneous entry into active cell cycle in short-term culture might be explained by the deregulated GF signaling present in many AMLs. View PublicationCatalog #: Product Name: 05100 MyeloCult™ H5100 09600 StemSpan™ SFEM 09500 BIT 9500 Serum Substitute Catalog #: 05100 Product Name: MyeloCult™ H5100 Catalog #: 09600 Product Name: StemSpan™ SFEM Catalog #: 09500 Product Name: BIT 9500 Serum Substitute Ciampi O et al. (JUN 2016) Stem Cell Research 17 1 130--139Generation of functional podocytes from human induced pluripotent stem cells
Generating human podocytes in vitro could offer a unique opportunity to study human diseases. Here, we describe a simple and efficient protocol for obtaining functional podocytes in vitro from human induced pluripotent stem cells. Cells were exposed to a three-step protocol, which induced their differentiation into intermediate mesoderm, then into nephron progenitors and, finally, into mature podocytes. After differentiation, cells expressed the main podocyte markers, such as synaptopodin, WT1, α-Actinin-4, P-cadherin and nephrin at the protein and mRNA level, and showed the low proliferation rate typical of mature podocytes. Exposure to Angiotensin II significantly decreased the expression of podocyte genes and cells underwent cytoskeleton rearrangement. Cells were able to internalize albumin and self-assembled into chimeric 3D structures in combination with dissociated embryonic mouse kidney cells. Overall, these findings demonstrate the establishment of a robust protocol that, mimicking developmental stages, makes it possible to derive functional podocytes in vitro.Catalog #: Product Name: 85850 ձ™1 05270 STEMdiff™ APEL™2 Medium Catalog #: 85850 Product Name: ձ™1 Catalog #: 05270 Product Name: STEMdiff™ APEL™2 Medium Stylianou J et al. ( 2006) Cytotherapy 8 1 57--61Novel cryoprotectant significantly improves the post-thaw recovery and quality of HSC from CB.
BACKGROUND Hematopoietic stem cells (HSC) have traditionally been frozen using the cryoprotectant DMSO in dextran-40, saline or albumin. However, the process of freezing and thawing results in loss of HSC numbers and/or function. METHODS This study investigated the use of CryoStor for the freezing of HSC from cord blood (CB). CB donations (n = 30) were collected under an Institutional Ethics Committee-approved protocol, volume reduced and frozen using three different methods of cryoprotection. Aliquots were frozen with either 10% DMSO in dextran-40, 10% DMSO in CryoStor or 5% DMSO in CryoStor. Prior to freezing samples were separated for nucleated cell (NC) and CD34+ counts and assessment of CD34+ viability. Aliquots were frozen and kept in vapor phase nitrogen for a minimum of 72 h. Vials were rapidly thawed at 37 degrees C and tested for NC and CD34+ counts and CD34+ viability and colony-forming unit (CFU) assay. RESULTS Cells frozen with CryoStor in 10% DMSO had significantly improved NC (P < 0.001), CD34+ recovery, viable CD34+ (P < 0.001) and CFU numbers (P < 0.001) compared with dextran in 10% DMSO. CryoStor in 5% DMSO resulted in significantly improved NC (P < 0.001) and CFU (P < 0.001). DISCUSSION These results suggest that improved HSC recovery, viability and functionality can be obtained using CryoStor with 10% DMSO and that similar if not better numbers can be obtained with 5% DMSO compared with dextran-40 with 10% DMSO.Catalog #: Product Name: 07930 CryoStor® CS10 Catalog #: 07930 Product Name: CryoStor® CS10 Items 217 to 228 of 6390 total
Shop ByFilter Results- Resource Type
-
- Reference 6390 items
- Area of Interest
-
- Angiogenic Cell Research 48 items
- Cancer 600 items
- Cell Line Development 137 items
- Chimerism 6 items
- Cord Blood Banking 23 items
- Drug Discovery and Toxicity Testing 176 items
- Endothelial Cell Biology 2 items
- Epithelial Cell Biology 156 items
- HIV 51 items
- HLA 7 items
- Immunology 733 items
- Infectious Diseases 1 item
- Neuroscience 486 items
- Stem Cell Biology 2484 items
- Transplantation Research 53 items
- Brand
-
- ALDECOUNT 7 items
- ALDEFLUOR 223 items
- AggreWell 55 items
- ArciTect 1 item
- BrainPhys 45 items
- ClonaCell 83 items
- CryoStor 65 items
- ES-Cult 74 items
- EasyPick 2 items
- EasySep 760 items
- EpiCult 12 items
- HepatiCult 1 item
- ImmunoCult 12 items
- IntestiCult 142 items
- Lymphoprep 25 items
- MammoCult 50 items
- MegaCult 35 items
- MesenCult 133 items
- MethoCult 481 items
- MyeloCult 75 items
- MyoCult 2 items
- NeuroCult 353 items
- NeuroFluor 1 item
- PancreaCult 3 items
- PneumaCult 78 items
- RSeT 6 items
- ReLeSR 1 item
- RoboSep 58 items
- RosetteSep 272 items
- STEMdiff 63 items
- STEMvision 9 items
- SepMate 42 items
- StemSpan 290 items
- TeSR 1581 items
- mFreSR 14 items
- Cell Type
-
- Airway Cells 40 items
- B Cells 134 items
- Brain Tumor Stem Cells 81 items
- Cancer Cells and Cell Lines 116 items
- Cardiomyocytes, PSC-Derived 8 items
- Dendritic Cells 59 items
- Dermal Cells 1 item
- Endothelial Cells 1 item
- Epithelial Cells 48 items
- Granulocytes and Subsets 61 items
- Hematopoietic Stem and Progenitor Cells 765 items
- Hepatic Cells 2 items
- Hybridomas 73 items
- Innate Lymphoid Cells 3 items
- Intestinal Cells 12 items
- Leukemia/Lymphoma Cells 8 items
- Mammary Cells 68 items
- Mesenchymal Stem and Progenitor Cells 132 items
- Monocytes 105 items
- Mononuclear Cells 32 items
- Myeloid Cells 99 items
- NK Cells 79 items
- Neural Cells, PSC-Derived 17 items
- Neural Stem and Progenitor Cells 376 items
- Neurons 134 items
- Plasma 3 items
- Pluripotent Stem Cells 1676 items
- Prostate Cells 7 items
- Renal Cells 2 items
- T Cells 178 items
- T Cells, CD4+ 84 items
- T Cells, CD8+ 48 items
- T Cells, Regulatory 18 items
Loading...Copyright © 2025 by ϳԹ. All rights reserved.